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Autonomous Robots
Autonomous robots are being developed to
operate in a variety of situations such as
industrial, transportation, domestic and
health care settings which may benefit
society and improve lives.
The robots will need to be able to act
autonomously and make decisions to
choose between a range of actions.
In addition they may need to operate in
changing, unknown or hazardous
environments working close to or in
collaboration with humans.
How do we make sure they are trustworthy,
safe, reliable and do what they are
supposed to?
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What is Trustworthiness and Safety?

Safety involves showing that the robot does nothing that
(unnecessarily) endangers the person.
There are ISO safety requirements and guidelines for
industrial robots (ISO 10218, 2011), personal care robots
(ISO 13482, 2014), and for collaborative robots (ISO
15066, 2016).
Trustworthiness involves social issues beyond pure safety.
It is not just a question of whether the robots are safe but
whether they are perceived to be safe, useful and reliable.
BSI 754 considers software trustworthiness including
safety, reliability, availability, resilience and security.
There are also legal, ethical, privacy etc issues such as

the robot spills a hot drink on someone;
the robot doesn’t remind the person to take their medicine;
the robot doesn’t go to the kitchen when told?
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Robots in the Workplace and at Home

Currently many robots used in industry or domestic use operate
in limited physical space or have limited functionality. This helps
assure their safety.

Robots’ industrial environments are limited so they can
only move in a fixed area and have limited interactions with
humans e.g. welding or paint spraying robots.
Small or limited capability domestic robots, e.g., vacuum
cleaning robots, robot lawn mowers, pool cleaning robots
etc
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Verification and Validation

We advocate an approach using verification and validation of
systems.

Verification: Are we building the system right?

Validation: Are we building the right system?

Verification, for example
formal verification
simulation-based testing
physical testing

Validation, for example
physical testing
user validation
test scenarios
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Robot Architectures: Modularity

Architectures that are modular, separating key components are
important to not only for verification but also for design,
analysis, compositionality, maintenance, re-use etc.

Verification Architectures

Robot Architectures: Transparency

We do not want all/many/any of our modules to be black boxes.

Agent
Agent

Agent
Wheel2

Agent
Motor

Agent
Sensor2

Agent
Sensor3 Agent

Planner

Agent
Wheel1

Increasingly, we require modular components to be transparent
e.g. we must be able to inspect the internal behaviour of the
module.

See: IEEE P7001 — Transparency of Autonomous Systems.
https://standards.ieee.org/project/7001.html

Michael Fisher Verification and Architectures 8/12

Different types of verification may be more appropriate to
different components.
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Robot Architectures: Decision Making

We assume an architecture where there is a separation
between the high level decision making layer and the low level
control layer.

etc

Control System

Sense and act

High level choices

Rational Agent

Low level control

Decision making

Avoidance

Reactive

Goal selection

Plan selection

Prediction
etc

We aim to represent and (formally) verify the decision making
layer and we don’t deal with low level control such as
movement etc.
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Formal Verification

A mathematical analysis of all behaviours using logics, and
tools such as theorem provers or model checkers.
We focus on temporal verification using automatic tools
and techniques that do not require user interaction.
Model checking is a fully automatic, algorithmic technique
for verifying the temporal properties of systems.
Input to the model checker is a model of the system and a
property to be checked on that model.
Output is that the property is satisfied or a counter
example is given.

Model Checker

Property holds

or

counter example

Property eg 

"always p"
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Simulation Based Testing

This is an testing methodology widely used in the design of
micro-electronic and avionics systems.
Testing in simulation environments can cover a wide range
of practical situations and may allow many more tests to be
carried out than with testing in the real world.
Producing tests can be carried out in different ways (model
based, pseudorandom, etc) and tools are used to
automate the testing and analyse the coverage of the tests.HRI Handover Scenario 

27 
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End User Validation

This approach involves experiments and user evaluations
in practical robot scenarios.
Scenarios relating to robot human interaction are
developed to test some hypothesis and experiments with
users carried out.
This helps establish whether the human participants
indeed view the robots as safe and trustworthy etc.

8 Journal Title XX(X)

• System model inaccuracies. All the verification
techniques use models of the real-world. The models
might have been constructed erroneously, or may be
inconsistent with the real world, or relative to one
another.

• Requirement model inaccuracies. In our approach,
the real-world requirements of the system are con-
verted into textual requirements, assertions and prop-
erties for verification. These requirements models
may not have been correctly formulated.

• Tool inaccuracies. It is possible that numerical
approximations affect the verification results. In
addition, third party tools can contain bugs that are
unknown to us.

We could now proceed to perform “Experiments.” As
before, we may find a problem with the textual require-
ments or the physical system during experimentation. At
the same time, the assurances from formal verification
and/or simulation-based testing can be compared against
the experiment results. We may also discover that one of the
assurances holds during simulation-based testing or formal
verification, but not during the experiments. In this case we
may need to refine any of the other assets, as explained
before.

Careful comparisons must be made between the dif-
ferent representations in order to discover the cause of
the assurance conflicts. Such comparisons are indicated
by the bi-directional arrows between “Formal Verification”
and “Simulation-based Testing”, “Simulation-based Test-
ing” and “Experiments”, and “Formal Verification” and
“Experiments”, respectively, in Figure 1.

4 The BERT Handover Task: A Case Study
In this section, we present a case study to demonstrate
the application of assurance-based verification to an HRI
scenario considering the following research question: can
assurance-based verification provide a higher degree of
confidence in the resulting assurances than when using
verification techniques in isolation?

BERT 2 is an upper-body humanoid robot designed to
facilitate research into complex human-robot interactions,
including verbal and non-verbal communication, such as
gaze and physical gestures (Lenz et al. 2010) (see Figure 2).
BERT 2’s software architecture was originally developed
using YARP¶. More recently, this system has been wrapped
with a ROS interface.

We verify an object handover to exemplify our approach,
in the context of a broader collaborative manufacture
scenario where BERT 2 and a person work together to
assemble a table (Lenz et al. 2012). In the handover, the
first step is an activation signal from the human to the

Figure 2. BERT 2 engaged in the handover task.

robot. BERT 2 then picks up a nearby object, and holds
it out to the human. The robot announces that it is ready
to handover. The human responds verbally to indicate that
they are ready to receive. (For practical reasons, human-to-
robot verbal signals were relayed to the robot by a human
operator pressing a key.) Then, the human is expected to
pull gently on the object while looking at it. BERT 2 then
calculates three binary sensor conditions:

• Gaze: The human’s head position and orientation
relative to the object are tracked using the Vicon R�

motion-tracking system for an approximate measure
of whether he/she is looking at the object.

• Pressure: Changes in the robot’s finger positions
are sensed to detect whether the human is applying
pressure to take the weight of the object.

• Location: The Vicon R� motion-tracking system is
used to determine whether the human’s hand is
located on the object.

The sensor conditions must be calculated within a time
threshold for BERT 2 to determine if the human “is ready”.
The robot should release its grip on the object if all
three conditions are satisfied. Otherwise, the robot should
terminate the handover and not release the object. The
human may disengage and the robot can timeout, which
would cancel the remainder of the handover task. The
sensors are not completely accurate and may sometimes
give incorrect readings.

A safety requirement ensures that “nothing bad
happens”, whereas a liveness requirement ensures that
“something good happens eventually” or inside a threshold

¶http://www.yarp.it

Prepared using sagej.cls
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Overall Approach
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Verifying Robot Assistants

The Trustworthy Robot Assistants Project developed and
applied three different approaches to verification and validation
of robot assistants.
Each approach is aimed at increasing trust in robot assistants.

Formal Verification (UoL)
Simulation-based Testing (BRL)
End-user Validation (UoH)

8 Journal Title XX(X)

• System model inaccuracies. All the verification
techniques use models of the real-world. The models
might have been constructed erroneously, or may be
inconsistent with the real world, or relative to one
another.

• Requirement model inaccuracies. In our approach,
the real-world requirements of the system are con-
verted into textual requirements, assertions and prop-
erties for verification. These requirements models
may not have been correctly formulated.

• Tool inaccuracies. It is possible that numerical
approximations affect the verification results. In
addition, third party tools can contain bugs that are
unknown to us.

We could now proceed to perform “Experiments.” As
before, we may find a problem with the textual require-
ments or the physical system during experimentation. At
the same time, the assurances from formal verification
and/or simulation-based testing can be compared against
the experiment results. We may also discover that one of the
assurances holds during simulation-based testing or formal
verification, but not during the experiments. In this case we
may need to refine any of the other assets, as explained
before.

Careful comparisons must be made between the dif-
ferent representations in order to discover the cause of
the assurance conflicts. Such comparisons are indicated
by the bi-directional arrows between “Formal Verification”
and “Simulation-based Testing”, “Simulation-based Test-
ing” and “Experiments”, and “Formal Verification” and
“Experiments”, respectively, in Figure 1.

4 The BERT Handover Task: A Case Study
In this section, we present a case study to demonstrate
the application of assurance-based verification to an HRI
scenario considering the following research question: can
assurance-based verification provide a higher degree of
confidence in the resulting assurances than when using
verification techniques in isolation?

BERT 2 is an upper-body humanoid robot designed to
facilitate research into complex human-robot interactions,
including verbal and non-verbal communication, such as
gaze and physical gestures (Lenz et al. 2010) (see Figure 2).
BERT 2’s software architecture was originally developed
using YARP¶. More recently, this system has been wrapped
with a ROS interface.

We verify an object handover to exemplify our approach,
in the context of a broader collaborative manufacture
scenario where BERT 2 and a person work together to
assemble a table (Lenz et al. 2012). In the handover, the
first step is an activation signal from the human to the

Figure 2. BERT 2 engaged in the handover task.

robot. BERT 2 then picks up a nearby object, and holds
it out to the human. The robot announces that it is ready
to handover. The human responds verbally to indicate that
they are ready to receive. (For practical reasons, human-to-
robot verbal signals were relayed to the robot by a human
operator pressing a key.) Then, the human is expected to
pull gently on the object while looking at it. BERT 2 then
calculates three binary sensor conditions:

• Gaze: The human’s head position and orientation
relative to the object are tracked using the Vicon R�

motion-tracking system for an approximate measure
of whether he/she is looking at the object.

• Pressure: Changes in the robot’s finger positions
are sensed to detect whether the human is applying
pressure to take the weight of the object.

• Location: The Vicon R� motion-tracking system is
used to determine whether the human’s hand is
located on the object.

The sensor conditions must be calculated within a time
threshold for BERT 2 to determine if the human “is ready”.
The robot should release its grip on the object if all
three conditions are satisfied. Otherwise, the robot should
terminate the handover and not release the object. The
human may disengage and the robot can timeout, which
would cancel the remainder of the handover task. The
sensors are not completely accurate and may sometimes
give incorrect readings.

A safety requirement ensures that “nothing bad
happens”, whereas a liveness requirement ensures that
“something good happens eventually” or inside a threshold

¶http://www.yarp.it

Prepared using sagej.cls

We focus on two use cases domestic (Care-O-bot R© at UoH)
and manufacturing (BERT at BRL).
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A Domestic Robot Assistant
Here we apply model checking to the
high level behaviours controlling the
(commercially available) Care-O-bot R©,
manufactured by Fraunhofer IPA.
It is based on the concept of a “robot
butler” which has been developed as a
mobile robot assistant to support people
in domestic environments.
It has a manipulator arm, an articulated
torso, stereo sensors serving as “eyes”,
LED lights, a graphical user interface,
and a movable tray.
The robot’s sensors monitor its current location, the state
of the arm, torso, eyes and tray.
Its software is based on the Robot Operating System.
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Care-O-bot and Robot House

This is deployed in a domestic-type house (the robot
house) at the University of Hertfordshire.
The robot house is equipped with sensors which provide
information on the state of the house and its occupants,
such as whether the fridge door is open and whether
someone is seated on the sofa.
Low-level robot actions such as movement, speech, light
display, etc., are controlled by groups of high-level rules
that together define particular behaviours.

3

Fig. 2. A plan view of the ground floor of the University of Hertfordshire Robot House. Numbered boxes show the locations of sensors.

models, and their formal verification, are described in
Section IV.

• Figs. 2 and 3 have been added to provide additional
information on the Robot House and the user activity
within it.

• Section V on related work has been updated, and Sec-
tion VI on conclusions and future work has been ex-
tended.

II. MODELLING THE CARE-O-BOT USING BRAHMS

The autonomous decision making within the Robot House
and Care-O-bot R� at the University of Hertfordshire is carried
out by a high-level planning/scheduling system described in
the previous section. The code base includes a database of 31
default rules for the Robot House and Care-O-bot to follow.
Careful examination of these rules revealed that they are
similar in structure to the various constructs within the Brahms
multi-agent workflow programming language.

The first step in modelling was to convert the full set of
Care-O-bot rules into a more convenient if-then rule repre-
sentation. For example, the rule in the previous section was
rewritten as:

IF tray_is_raised AND tray_is_empty
THEN set_light(yellow)

move_tray_and_wait(lowered_position)
set_light(white)
wait()
set(tray_is_raised,false)
set(tray_is_lowered,true)

Once translated into this format, these rules could then be
straightforwardly translated into Brahms. A key concept in
Brahms is the ‘workframe’, which specifies a sequence of
things to be done when a given condition holds. The Robot
House rules were translated into Brahms workframes within
the Care-O-bot agent, with the IF a THEN b rules trans-
lated into the when a do { b } construct in Brahms.
For example, the rule above was translated into a Brahms
workframe called wf_lowerTray:

workframe wf_lowerTray {
repeat: true;
priority: 10;

when(knownval(current.trayIsRaised = true)
and
knownval(current.trayIsEmpty = true))

do{
conclude((current.lightColour =

current.colourYellow));
lowerTrayAndWait();
conclude((current.lightColour =

current.colourWhite));
waitForLightColourChange();
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Care-O-bot Decision Making: Behaviours

The Care-O-bot’s high-level decision making is determined
by a set of behaviours of the form precondition → action
(each a sequence of rules).
UoH have developed a number of behaviour sets. Here we
focus on a set with 31 default behaviours.
Examples of high-level rules can take the form “lower tray”,
“move to sofa area of the living room”, “say ‘The fridge
door is open’ ”, set a flag, check a sensor etc.
Only one behaviour executes at once.
Each behaviour has a priority (integer between 0 and 90).
Higher priority behaviours are executed in preference to
lower priority behaviours.
Each behaviour is flagged as interruptible or not.
Once it has started executing, a behaviour will execute to
completion, if it is not interruptible.
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The S1-alertFridgeDoor Behaviour

Behaviours (a set of high level rules) take the form:

Precondition-Rules -> Action-Rules

27 Fridge Freezer Is *ON* AND has been ON for more than 30 secs
31 ::514:: GOAL-fridgeUserAlerted is false

32 Turn light on ::0::Care-o-Bot 3.2 to yellow
34 move ::0::Care-o-Bot 3.2 to ::2:: Living Room and wait for

completion
35 Turn light on ::0::Care-o-Bot 3.2 to white and wait for

completion
36 ::0::Care-o-Bot 3.2 says ‘The fridge door is open!’ and

wait for completion
37 SET ::506::GOAL-gotoCharger TO false
38 SET ::507::GOAL-gotoTable TO false
39 SET ::508::GOAL-gotoSofa TO false
40 ::0::Care-o-Bot 3.2 GUI, S1-Set-GoToKitchen, S1-Set-WaitHere
41 SET ::514::GOAL-fridgeUserAlerted TO true

Its priority is 60 and it is not interruptible.
Clare Dixon Verifying Autonomous Robots 16 / 34
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Models and Properties

We need to abstract away from some of the timing details
included in the database to obtain a model that is discrete,
finite and not too large.
We developed a (by hand) model in the input language for
the model checker NuSMV and later developed a tool
(CRutoN) to automatically translate from behaviours to
NuSMV input.
We also need a set of properties of the system to check
over the model.
Ideally these would come from a specification or standards
documents about what is expected of the robot with
respect to functionality, safety etc.
Here we focus on issues relating to the scheduling of
behaviours, priorities and interruptions (which at least
provide a sanity check).
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Sample Properties and Model Checking Results

1 ((fridge_freezer_on ∧ ¬goal_fridge_user_alerted)⇒
♦(location = livingroom ∧♦say = fridge_door_open))

2 ((fridge_freezer_on ∧ ¬goal_fridge_user_alerted ∧
schedule = schedule_alert_fridge_door)⇒
♦(location = livingroom ∧♦say = fridge_door_open))

Property Output Time (sec)
1 FALSE 11.1
2 TRUE 12.3

The model had 130,593 reachable states.
We did find a small bug in the behaviours (a flag was
wrongly set) but this was by inspection of the behaviours.
It would be better to try properties relating to the
requirements of the robot.
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Domestic Robot Assistant: Discussion

Understanding the semantics of the robot execution cycle
took a lot of close work and interaction with UoH.
The state explosion problem means we have to find a
balance between the level of detail/abstraction and
verification times (timing details were not well represented).
This approach isn’t very general for different ways of robot
decision making and the person has not been modelled.
CRutoN allowed us to translate from different databases of
behaviours into input for a model checker, setting
parameters to control particular aspects of the translation.
CRutoN uses an intermediate representation so that input
to different model checkers can potentially be generated.
We could deal better with uncertainty or timing constraints
by using a different model checker.
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Experiments with Trust and Reliability

UoH experimented (40 participants) using two scenarios in the
robot house where the robot appeared faulty or not.

In both scenarios the person was asked to carry out a task with
the robot.

Results suggested that although errors in a robot’s behaviour
are likely to affect participant’s perception of its reliability and
trustworthiness, this doesn’t seem to influence their decisions
to comply with instructions (or not).

Their willingness to comply with the
robot’s instructions seem to depend
on the nature if the task, in particular,
whether its effects are irrevocable.
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Learning New Behaviours
The robot has an interface to personalise
behaviours so that users can use existing
primitives to create new behaviours.
However these may affect or be affected by
existing behaviours and may never run.
We developed a verification algorithm that
carries out a static check on newly added
behaviours relating to their priorities and
preconditions presenting issues to the user.
A user study showed that the verification
approach was significantly more useful for
understanding and resolving interference
between behaviours than without it and no
technical background was needed to
understand this.

Figure 2: Screenshots of the teaching interface.
In the ‘When’ phase the user chooses to consider
events in the house and clicks on the kettle option.

version of Brooke’s System Usability Scale (SUS)
which rates the general usability of an interactive
system [31]. Answers to questions are based on a
5 point Likert scale ranging from 1 - ‘Not at all’, 2
- ‘Not really’, 3 -‘Maybe’, 4 -‘Yes probably’ and 5
-‘Yes definitely’. We had used this scale in a previ-
ous validation of the teachMe system [9], however
here we extended the questionnaire with two addi-
tional questions: firstly ‘The robot teaching system
helped me resolve inconsistencies in the relatives in-
structions’, and secondly ‘The robot teaching sys-
tem helped me understand how behaviours can in-
terfere with each other’. the participants were also
given an opportunity to write an expanded answer
to these two questions if they wished. Following

Figure 3: Screenshots of the teaching interface.
The user reviews the complete taught behaviour.

the B section questionnaire participants could also
provide further comments.

6 Results

6.1 Outcome variables

There were three outcome variables, one as the re-
sponses to the System Usability Scale (SUS) [31]
as well as two Likert scale items for the questions
shown below:

• The robot teaching system helped me resolve
inconsistencies in the relative’s instructions.

• The robot teaching system helped me under-
stand how behaviours can interfere with each
other.

6.1.1 SUS Responses

SUS Responses for each of the two repeated mea-
sures conditions are presented in table 3.

The mean scores comply with our previous ex-
periment on usability of the system [9] with high
usability and indicate that there were no signifi-
cant or salient di↵erences between the two repeated
measures conditions. This would suggest a positive
response to to research question 3.

Presentation order e↵ects in terms of SUS re-
sponses were insignificant (see Table 4).
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Figure 4: Screenshots of the teaching interface.
The system detect a possible interference between
two behaviours and asks user to take action to re-
solve it.

6.1.2 Likert Scale Responses

Question 11

As tables 5 and 6 suggest, there were di↵erences be-
tween the two repeated measures conditions. These
di↵erences were significant(Wilcoxon’s p < .01),
and participants considered the system with verifi-
cation more favourably, partly providing a positive
response to research question 1.

Table 7 suggests that there were no e↵ects from
presentation order in terms of responses to the two
di↵erent conditions for question 11.

Question 12

Tables 8 and 9 suggest that there were significant
di↵erences between the two repeated measures con-
ditions (Wilcoxon’s p < .05). Thus participants
considered the system helped them understand the
interference issue better, providing a positive re-
sponse to research question 1.

Table 10 suggests that there were no e↵ects from
presentation order in terms of responses to the re-
peated measures variable.

Figure 5: Training in progress. The experimenter
is facing the window, the participant is facing the
laptop computer with the teachMe system running.
The Care-O-bot3 R�robot is present in the back-
ground.

6.2 Demographics and Outcome
Variables

6.2.1 Gender

There were no relationships between the repeated
measures conditions and gender for any of the three
outcome variables (see table 11).

6.2.2 Prior Interaction with Robots and
Programming Experience

There were no relationships between the repeated
measures conditions and prior interactions with
robots for any of the three outcome variables (see
table 12).

There were also no relationships between experi-
ence of programming robots and the repeated mea-
sures conditions for any of the three outcome vari-
ables (see table 13).

This indicates that participants’ background has
little e↵ect on detecting and solving behaviour in-
terference issues (research question 2).

7 Conclusions

While the participants did not find the two con-
ditions (with verification and without verification)

12

Clare Dixon Verifying Autonomous Robots 21 / 34



Introduction Techniques and Approach Robot Assistants Swarms and Sensors Hazardous Environments Conclusions

The Manufacturing Scenario: Verification

The focus was on a table leg handover task. The gaze, hand
location and hand pressure of the human should be correct
before the handover takes place.

8 Journal Title XX(X)

• System model inaccuracies. All the verification
techniques use models of the real-world. The models
might have been constructed erroneously, or may be
inconsistent with the real world, or relative to one
another.

• Requirement model inaccuracies. In our approach,
the real-world requirements of the system are con-
verted into textual requirements, assertions and prop-
erties for verification. These requirements models
may not have been correctly formulated.

• Tool inaccuracies. It is possible that numerical
approximations affect the verification results. In
addition, third party tools can contain bugs that are
unknown to us.

We could now proceed to perform “Experiments.” As
before, we may find a problem with the textual require-
ments or the physical system during experimentation. At
the same time, the assurances from formal verification
and/or simulation-based testing can be compared against
the experiment results. We may also discover that one of the
assurances holds during simulation-based testing or formal
verification, but not during the experiments. In this case we
may need to refine any of the other assets, as explained
before.

Careful comparisons must be made between the dif-
ferent representations in order to discover the cause of
the assurance conflicts. Such comparisons are indicated
by the bi-directional arrows between “Formal Verification”
and “Simulation-based Testing”, “Simulation-based Test-
ing” and “Experiments”, and “Formal Verification” and
“Experiments”, respectively, in Figure 1.

4 The BERT Handover Task: A Case Study
In this section, we present a case study to demonstrate
the application of assurance-based verification to an HRI
scenario considering the following research question: can
assurance-based verification provide a higher degree of
confidence in the resulting assurances than when using
verification techniques in isolation?

BERT 2 is an upper-body humanoid robot designed to
facilitate research into complex human-robot interactions,
including verbal and non-verbal communication, such as
gaze and physical gestures (Lenz et al. 2010) (see Figure 2).
BERT 2’s software architecture was originally developed
using YARP¶. More recently, this system has been wrapped
with a ROS interface.

We verify an object handover to exemplify our approach,
in the context of a broader collaborative manufacture
scenario where BERT 2 and a person work together to
assemble a table (Lenz et al. 2012). In the handover, the
first step is an activation signal from the human to the

Figure 2. BERT 2 engaged in the handover task.

robot. BERT 2 then picks up a nearby object, and holds
it out to the human. The robot announces that it is ready
to handover. The human responds verbally to indicate that
they are ready to receive. (For practical reasons, human-to-
robot verbal signals were relayed to the robot by a human
operator pressing a key.) Then, the human is expected to
pull gently on the object while looking at it. BERT 2 then
calculates three binary sensor conditions:

• Gaze: The human’s head position and orientation
relative to the object are tracked using the Vicon R�

motion-tracking system for an approximate measure
of whether he/she is looking at the object.

• Pressure: Changes in the robot’s finger positions
are sensed to detect whether the human is applying
pressure to take the weight of the object.

• Location: The Vicon R� motion-tracking system is
used to determine whether the human’s hand is
located on the object.

The sensor conditions must be calculated within a time
threshold for BERT 2 to determine if the human “is ready”.
The robot should release its grip on the object if all
three conditions are satisfied. Otherwise, the robot should
terminate the handover and not release the object. The
human may disengage and the robot can timeout, which
would cancel the remainder of the handover task. The
sensors are not completely accurate and may sometimes
give incorrect readings.

A safety requirement ensures that “nothing bad
happens”, whereas a liveness requirement ensures that
“something good happens eventually” or inside a threshold

¶http://www.yarp.it
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RobotController_3S

Modelling was carried out using Probabilistic Timed Automata
(PTA) and verification via the PRISM probabilistic model
checker.
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Manufacturing Scenario: Simulation Based Testing

12 Journal Title XX(X)

code to be used in simulation and in the actual robot,
providing consistency between simulations, experiments,
and deployed use. A screenshot of the ROS/Gazebo
simulation can be seen in Figure 5.

For the simulator, additional ROS nodes were con-
structed in Python, to simulate BERT 2’s sensor sys-
tems and embedded actuation controllers. The pre-existing
URDF file describing BERT 2 was extended as described
previously for use in Gazebo. The simulated human
behaviour was controlled by a ROS node written in Python,
driving a simplified physical model of the head and hand.

Figure 5. Screenshot of the simulated handover task. The
human head and hand are represented in orange. The object
to be handed over is shown in blue.

A testbench was incorporated into the simulator. The
testbench comprised a test generator, a driver, a checker
and a coverage collector. Achieving the exploration of
meaningful and interesting sequences of behaviours from
the robot and its environment in an HRI task is a
challenging task. For this reason, we stimulate the robot’s
code in the simulation indirectly through stimulating its
environment (e.g., the person’s behaviour) instead, and we
use a combination of model-based and pseudorandom test
generation. Also, to alleviate the complexity of generating
and timing different types of system inputs, the test
generator is based on a two-tiered approach (Araiza-Illan
et al. 2016) where an abstract test is generated first and
then concretized by instantiating low-level parameters. The
high-level actions of the human in the simulator include
sending signals to the robot, or setting abstract parameters
for gaze, location and pressure. Low-level parameters
include the robot’s initial pose and the poses and force
vectors applied by the human during the interaction. For
example, we computed an abstract test of high-level actions
for the human, by exploring the model in UPPAAL⇤⇤, so

that the robot was activated (sending a signal to activate the
robot and wait for the robot to present the object), the gaze,
pressure and location sensor readings were correct (set
gaze, pressure and location to mean “ready”), and the robot
released the object. This allowed testing the requirement “if
the human is ready, BERT 2 should hand over the object”.

The driver distributed the test components in the
simulator. A self-checker — i.e., automated assertion
monitors — was added according to the requirements,
described in more detail in the following subsection.
Finally, a coverage collector gathered statistics on the
triggering of the assertion monitors.

The simulator code is available online††.

5.2.1 Assertion Monitors For requirements checking,
assertion monitors were implemented as state machines
in Python, allowing sequences of events to be captured.
If the precondition of an assertion is satisfied, the
machine transitions to check the relevant postconditions,
to determine if the assertion holds, or not. Otherwise, the
postconditions are never checked.

For example, requirements Reqs. 1a-b and Req. 3 were
both initially monitored as the following sequence:
if (sensors_OK)

wait_for(robot_decision)
assert(robot_released_object)

Note that, as with the logical properties, there may
be different ways to implement an assertion for the
same textual requirement, and there is scope for
misinterpretation.

The results of the assertion checks, if triggered, are
collected and a conclusion about the satisfaction of the
verified requirements can be drawn at the end of simulation.
The number of times each assertion monitor has been
triggered in a set of tests can be used as a measure of the
coverage achieved by that test set.

5.3 Experiments
5.3.1 Experiment Design BERT 2 can be verified exper-
imentally with respect to the textual requirements using a
custom facility at the Bristol Robotics Laboratory, as shown
in Figure 2. When seeking to verify probabilistic properties
of a system, the experiments should ideally provide an
unbiased sampling, representative of the system’s deployed
environment. However, some phenomena may be difficult
to reproduce naturally in experiments, due to their rarity,
safety considerations, or other practical limitations. Conse-
quently, experiment-based estimates of their likelihood may
be inaccurate, as may estimates of dependent properties
such as the overall success rate of the task.

⇤⇤http://www.uppaal.org
††https://github.com/robosafe/testbench_ABV

Prepared using sagej.cls

A simulator was implemented in the ROS framework for robot
code development and the Gazebo simulator (BRL).
A combination of model-based and pseudorandom test
generation was used.
We used the formal PTA model to develop abstract tests of
high-level actions for the human.
Simulation based testing revealed that the robot sometimes
dropped the table leg accidentally (gripper failure).

Clare Dixon Verifying Autonomous Robots 23 / 34



Introduction Techniques and Approach Robot Assistants Swarms and Sensors Hazardous Environments Conclusions

Manufacturing Scenario: Real Robot Experiments

We carried out a small user validation
study with 10 participants each carrying
out 10 handover tasks.

Subjects were given clear instructions on
how to successfully complete the task,
followed by practice sessions.

They were instructed to try to complete the task success-
fully in each test.

The experiments revealed false negative results for the
pressure and location sensors, i.e. they were wrongly re-
ported as too low/incorrect hand position when they were
in fact correct.
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The Manufacturing Scenario: Discussion

A number of properties checked inspired by the ISO
requirements, e.g. “At least 95% (60%) of handover
attempts should be completed successfully”.
Disagreement between outcomes from some of the
techniques meant further investigation and refinement of
the models was needed:

simulation based testing revealed that the robot sometimes
dropped the table leg accidentally which was not modelled
in the formal verification;
real experiments revealed false negatives for the pressure
and location sensors not represented elsewhere.

Some of the techniques were not suitable for verifying
some of the requirements, for example for aspects such as
speed or closeness formal verification may not be the best
technique to use.
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Verification of Swarm Robots and Sensor Systems

A robot swarm is a collection of simple (often identical)
robots working together to carry out some task.
Each robot has a small set of behaviours and is typically
able to interact with nearby robots and its environment.
Usually there is no overall controller and are interested in
emergent behaviour.
Some similarities to (networks of) sensor systems.
Using robot swarms is appealing in hostile environments
e.g. underwater, contaminated areas, or space as they are
claimed to be robust to failure of individuals.
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Case Studies

Verification of the connectedness property of a particular
robot swarm algorithm, the alpha algorithm, which makes
use of local wireless connectivity information alone to
achieve swarm aggregation.
Probabilistic model checking to a swarm of foraging robots.
Verification of UAVs as a communication network.
Verification of synchronisation and gossip protocols used
for swarm robots and sensor networks.

Synchronisation in Nature
Formal Analysis of Systems of Oscillators

Further Abstractions
Summary

Biological Oscillators
Pulse-Coupled Oscillators

Pulse-Coupled Oscillators
NetLogo

Simulations were
conducted using NetLogo.

Paul Gainer, Michael Fisher, Clare Dixon Routes Towards Formal Verification of Network Synchronisation
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Robot Swarms: Discussion

Whilst the algorithms for these systems tend to be small
modelling more than a small number of robots leads to a
large number of states (the state explosion problem).
Population based models can help as long as we don’t
need to identify each individual.
How can we be sure that the correct verification of a
property for n robots will still hold for n + 1?
Abstractions can help reduce the state space but then
counter models must be checked to see whether they
represent real issues rather than side effects of this.

X ........................... XX

robot 1 robot 2 robot N................................................
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Robots in Hazardous Environments

We are currently developing and applying verification
techniques to robotics and autonomous systems in extreme
and hazardous environments.
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tends to suit the verification of particular types of behaviour. However, in some cases
we may only have access to the black-box or white-box implementation of a node
and so, we must use (simulation-based) testing techniques for verification.

Our approach facilitates the use of heterogeneous verification techniques for the
nodes in a robotic system. We achieve this by specifying contracts as properties in
FOL, as high-level node specifications, and we employ temporal logic for reasoning
about the combination of these FOL specifications. Thus, we attach the assumptions
(A (i)) and guarantees (G (o)) to individual nodes (shown in Fig. 1.1). This abstract
specification can be seen as a logical prototype for individual nodes and thus the
entire robotic system.

1.3.1 FOL Contract Specifications

Vision:
Black-Box

Implementation

A1(i1) G1(o1)

Planner:
Model-based
Specification

A2(i2) G2(o2)

Plan Reasoning
Agent:

Logical/Algebraic
Specification

A3(i3) G3(o3)

Hardware
Interface:
White-Box

Implementation

A4(i4) G4(o4)

Software Testing Program Model
Checking Theorem Proving Simulation-Based

Testing

Figure 1.1: We specify the Assume-Guarantee contracts for each node (denoted by A (i) and G (o) respectively).
These are then used to guide the verification approach applied to each node, denoted by dashed lines, such as software
testing for a black-box implementation of the Vision node. The solid arrows represent data flow between nodes and that
the assumptions of the next node should follow from the guarantee of the previous.

For each node, N, we specify AN(iN) and GN(oN) where iN is a variable rep-
resenting the input to the node, oN is a variable representing the output from the
node, and AN(iN) and GN(oN) are FOL formulae describing the assumptions and
guarantees, respectively, of this node.
Each individual node, N, obeys the following implication

8iN ,oN ·AN(iN) ) ⌃GN(oN)
where ‘⌃’ is LTL’s [4] “eventually” operator. So, this implication means that if the
assumptions, AN(iN), hold then eventually the guarantee, GN(oN), will hold. Note
that our use of temporal operators here is motivated by the temporal nature of robotic
systems and will be of use in later extensions of this work.

Consider the autonomous Plan Reasoning Agent in Fig. 1.1, we can specify
the following simple assumption, A3(i3):

A3(i3) = 8p · p 2 PlanSet ) goal 2 p

which ensures that every plan that is returned by the Planner contains the goal loca-
tion. Then, we might specify the guarantee that the agent chooses the shortest plan
as follows:

G3(o3) = (plan 2 PlanSet)^ (8p · p 2 PlanSet)^ (p 6= plan) ) (length(plan)  length(p))

Once the FOL assumption and guarantee are specified, then we use these high-level
specifications as properties to be verified of the individual nodes. For the autonomous
Plan Reasoning Agent, we can use a number of techniques for verifying that it meets
its associated FOL specification. For example, we can specify the node using the
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Concluding Remarks: Summary

We gave an overview to the research carried out on several
projects approaches to trust, safety, reliability and robustness
for robots.

We advocate the use of a suite of verification and validation
techniques to help gain assurance of the robot’s safety,
reliability and functional correctness.

We discussed the combination of formal verification (model
checking), simulation-based testing, and user validation in
experiments with real robots.

We advocate the use of modular robot architectures and a
separation of decision making components.

Requirements are essential so we know what the robot is
expected to do. We can use these to derive properties and
assertions.

Clare Dixon Verifying Autonomous Robots 30 / 34



Introduction Techniques and Approach Robot Assistants Swarms and Sensors Hazardous Environments Conclusions

Concluding Remarks: Challenges

Standards and certification: We need to work with regulators
to develop standards and routes to certification better suited for
autonomous systems.
Design How can we design autonomous systems to facilitate
verification?
Environment How do we model uncertain, unstructured
environments?
State space explosion: Formal verification suffers from the
state space explosion how can we develop and utilise it for
such systems?
Learning: How do we verify and certify systems that learn?
Trustworthiness: There are issues of both over trusting such
systems and lack of trust.
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