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Introduction



Introduction

Machine Learning (ML) is the basis of modern Artificial Intelligence. From a

symbolic point of view, it deals with the problem of inducing a model from

available data.

Model induction, in opposition with model, or formula, deduction, is a statistical

process, but, nonetheless, it can be logic-based.
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Introduction

Classic ML models are designed for static data (i.e., without no temporal

component). Data sets are usually collections of instances, each represented by a

set of attributes plus (in supervised learning models) a class.

Most popular symbolic learning models are based on propositional logic, which is

implicitly used to represent the results. The most striking example of this is

decision tree learning:
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p ¬p

q ¬q

which can be seen ”logically” (p can be, e.g., ”age is over 30”). 3/26



Introduction

But what if data is inherently temporal where each instance is a multivariate time

series (i.e., a set of variables changing over time)?

Classification of multivariate time series is an active area of research across the

scientific disciplines, such as air temperature in climate science, rates of inflation in

economics, trends in infectious diseases in medicine, pronunciations of word signs

in lingustics, sensor recordings of systems in aerospace engineering, among others.
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Introduction

Types of learning schemas for (multivariate) time series:

Reference
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(Kakizawa et. al., 1998) X X X
(Diez et. al., 2001) X X X

(Yamada et. al., 2003) X X X
(Balakrishnan & Madigan, 2006) X X X

(Bartocci et. al. 2014) X X X
(Baydogan & Runger, 2015) X X X

(Brunello et. al., 2019) X X X
(Lucena-Sánchez et. al., 2019) X X X

In this talk, we present a native, symbolic learning schema for inducing temporal

decision trees for multivariate time series classification where the learnt symbolic

theory is expressed in the interval temporal logic HS.
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A Theory of Static Decision Trees

Consider a labelled static data set D = {D1, . . . , Dm} described by a set of

attributes A = {A1, . . . , An} and, w.l.o.g., associated with a set of classes

C = {Y es,No}. Let dom(A) denote the domain of an attribute A ∈ A.

The language of static decision trees encompasses a set of propositional decisions:

S = {A ./ a | A ∈ A, a ∈ dom(A)},

where ./∈ {≤,=}.

Binary static decision trees are formulas of the following grammar:

ϕ̂ ::= (S ∧ ϕ̂) ∨+ (¬S ∧ ϕ̂) | C,

where C ∈ C and S ∈ S.

A decision S is interpreted over a single instance D using classical propositional

logic: we say, e.g., that D satisfies the decision A ≤ a if A’s value is less than or

equal to a ∈ dom(A) in D, and we use the symbol D |= (A ≤ a).
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A Theory of Static Decision Trees

A decision tree is interpreted over a labelled data set D via the semantic relation

|̂=θ, which generalizes |= from single instances to data sets: we need to define the

notion of a data set satisfying ϕ̂ with parameter θ, that is, D |̂=θϕ̂ (learning

problem).

The parameter θ formalizes the notion of how well a decision tree ϕ̂ represents D.

By comparing C(D) (true class) and ϕ̂(D) (predicted class) for each instance

D ∈ D we can compute the performance of a decision tree ϕ̂ in terms of its

confusion matrix:

C(D) = No C(D) = Y es

ϕ̂(D) = No True Negative (TN) False Negative (FN)

ϕ̂(D) = Y es False Positive (FP) True Positive (TP)
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A Theory of Static Decision Trees

The root of a tree ϕ̂ is associated with the data set D on which it is interpreted,

and, in general, each node of the tree is associated with a subset D′ ⊆ D and a

binary decision S.

A set D′ is partitioned into two subsets D′1 and D′2, that contain, respectively the

instances that satisfy S and those that do not.

From the leaves, one can inductively compute the confusion matrix of each node,

and the confusion matrix of the root is the one we associate with the tree itself.
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A Theory of Static Decision Trees

The rules for |̂=θ are now immediate:

D |̂=θNo if θ =
|DNo| |D| − |DNo|

0 0
, where

DNo = {D ∈ D | C(D) = No},

D |̂=θY es if θ =
0 0

|D| − |DY es| |DY es|
, where

DY es = {D ∈ D | C(D) = Y es},
D |̂=θ(S ∧ ϕ̂1) ∨+ (¬S ∧ ϕ̂2) if θ = θ1 + θ2,D1 |̂=θ1

ϕ̂1, and D2 |̂=θ2
ϕ̂2, where

D1 = {D ∈ D | D |= S},D2 = {D ∈ D | D |= ¬S},
D = D1 ∪ D2, and D1 ∩ D2 = ∅.
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Mind Map

Dataset: D = {D1, . . . , Dm}
Attributes: A = {A1, . . . , An}
Decisions: S = {A ./ a}

Decision Trees: ϕ̂ ::= (S ∧ ϕ̂) ∨+ (¬S ∧ ϕ̂) | C
Learning Problem: D |̂=θ ϕ̂
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Time Series

A time series is a set of variables that change over time, and they can be

univariate or multivariate.

1 2 3 4 5 . . . N − 1 N
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A labelled temporal data set T = {T1, . . . , Tm} is a set of temporal instances

described by a set of temporal attributes A = {A1, . . . , An}, each being a N -points

time series, and, w.l.o.g., associated to a set of classes C = {Y es,No}.

The multivariate time series classification is the problem of finding a formula

(symbolic classification) or a function (functional classification) that associates

multivariate time series to classes.
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Timelines

Sciavicco et. al. (2019) proposed a discretization method for mapping a time series

into a timeline. Intuitively, a timeline can be seen as the categorical counterpart of

a numerical time series.

After the discretization of a time series that describe a continuous process, it

makes little sense to model their values at each time-point, but, instead, they are

naturally represented as interval-based ontology.

Therefore, if a static numerical data set is naturally expressed in propositional

logic, a multivariate time series is naturally expressed in an interval temporal logic.
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HS: The Modal Logic of Allen’s Interval Relations

Let [N ] be an initial subset of N of length N . An interval over [N ] is an ordered

pair [x, y], where x, y ∈ [N ] and x < y. Let I([N ]) be the set of all intervals over

[N ].

Excluding the equality, there are 12 binary ordering relations between 2 intervals

on a linear order, often called Allen’s interval relations, which give rise to

corresponding unary modalities over frames where intervals are primitive entities.
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HS: The Modal Logic of Allen’s Interval Relations

HS modality Definition w.r.t. interval structure Example

x y

z t

z t

z t

z t

z t

z t

〈A〉 (after) [x, y]RA[z, t] ⇔ y = z

〈L〉 (later) [x, y]RL[z, t] ⇔ y < z

〈B〉 (begins) [x, y]RB [z, t] ⇔ x = z ∧ t < y

〈E〉 (ends) [x, y]RE [z, t] ⇔ y = t ∧ x < z

〈D〉 (during) [x, y]RD[z, t] ⇔ x < z ∧ t < y

〈O〉 (overlaps) [x, y]RO[z, t] ⇔ x < z < y < t

For each modality 〈X〉, its transpose corresponds to the inverse RX of RX , i.e.,

RX = (RX)−1. HS formulas are defined by the following grammar:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | 〈X〉ϕ | 〈X〉ϕ,

where p ∈ AP (atomic proposition), and X ∈ {A,L,B,E,D,O}.
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HS: The Modal Logic of Allen’s Interval Relations

An interval model is a pair T = 〈I([N ]), V 〉1, where V : AP → 2I([N ]) is a valuation

function that assigns to each proposition p ∈ AP the set of intervals V (p) on

which p holds.

The truth of a HS formula ϕ on an interval [x, y] of an interval model T is defined

by structural induction on formulas:

T, [x, y]  p iff [x, y] ∈ V (p), for p ∈ AP,

T, [x, y]  ¬ψ iff T, [x, y] 6 ψ,

T, [x, y]  ψ ∨ ξ iff T, [x, y]  ψ or T, [x, y]  ξ,

T, [x, y]  〈X〉ψ iff ∃[z, t] s.t. [x, y]RX [z, t] and T, [z, t]  ψ,

T, [x, y]  〈X〉ψ iff ∃[z, t] s.t. [x, y]RX [z, t] and T, [z, t]  ψ.

1We deliberately use the symbol T to indicate both a timeline and a time series.
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A Theory of Temporal Decision Trees

Now, consider a labelled temporal data set T = {T1, . . . , Tm} described by the

time series A = {A1, . . . , An} and, as before, classified with classes C = {Y es,No}.

Unlike the static case, we do not ask if A ./ a only in the current interval, but also

if there exists an interval, related to the current one, so that a decision becomes

〈X〉(A ./ a). It follows that ./∈ {≤,=, >}.

Moreover, we may relax the requirement A ./ a over a given interval [x, y] by

asking that at least a certain fraction of the values of A in the interval [x, y] meet

the condition, denoted by A ./α a with α ∈ (0, 1] ⊂ R.

In some applications, trends are more important than values. From this, we denote

by Az the z-th discrete derivative of A; we identify A with A0.
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A Theory of Temporal Decision Trees

Thus, the language of temporal decision trees encompasses a set of temporal

decisions:

S = {〈X〉(Az ./α a), 〈X〉(Az ./α a) | X ∈ X , A ∈ A, a ∈ dom(Az)}∪
{Az ./α a | A ∈ A, a ∈ dom(Az)},

where X = {A,L,B,E,D,O} are interval operators of HS.

Temporal decision trees are formulas of the following grammar:

ϕ̂ ::= (S ∧ ϕ̂) ∨+ (¬S ∧ ϕ̂) | C,

where C ∈ C and S ∈ S.

For a temporal decision S ∈ S, we use the notation T, [x, y]  S or T  S when

[x, y] is the (current) reference interval of T .
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A Theory of Temporal Decision Trees

1 2 3 4 5 . . . N − 1 N

5
6
7
8
9

•

• •
•

•

•
•

•
•

•

In the above time series T :

• T, [1, 2]  〈A〉(A >0.75 8) because ∃[2, 5] such that [1, 2]RA[2, 5] and

|{t | 2 ≤ t ≤ 5 and A(t) > 8}|
5− 2 + 1

=
3

4
= 0.75;

• T, [3, 5] 6 〈L〉(A >0.2 7) that is T, [3, 5]  [L](A ≤0.2 7);

• T, [N − 1, N ] 6 〈L〉(A ≤1.0 4) that is T, [N − 1, N ]  [L](A >1.0 4).
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A Theory of Temporal Decision Trees

As before, for a labelled temporal data set T , the rules for ̂θ are immediate:

T ̂θNo if θ =
|TNo| |T | − |TNo|

0 0
, where

TNo = {T ∈ T | C(T ) = No},

T ̂θY es if θ =
0 0

|T | − |TY es| |TY es|
, where

TY es = {T ∈ T | C(T ) = Y es},
T ̂θ(S ∧ ϕ̂1) ∨+ (¬S ∧ ϕ̂2) if θ = θ1 + θ2, T1 ̂θ1 ϕ̂1, and T2 ̂θ2 ϕ̂2, where

T1 = {T ∈ T | T  S}, T2 = {T ∈ T | T  ¬S},
T = T1 ∪ T2, and T1 ∩ T2 = ∅.

Observe that a temporal decision S entails unique T1 and T2, but not unique (new)

reference intervals for the time series of T1; however, this choice is implementative,

not theoretical.
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Mind Map

Temporal Dataset: T = {T1, . . . , Tm}
Temporal Attributes: A = {A1, . . . , An}
Temporal Decisions: S = {〈X〉(Az ./α a), 〈X〉(Az ./α a)}∪

{Az ./α a}
Temporal Decision Trees: ϕ̂ ::= (S ∧ ϕ̂) ∨+ (¬S ∧ ϕ̂) | C

Temporal Learning Problem: T ̂θ ϕ̂

Dataset: D = {D1, . . . , Dm}
Attributes: A = {A1, . . . , An}
Decisions: S = {A ./ a}

Decision Trees: ϕ̂ ::= (S ∧ ϕ̂) ∨+ (¬S ∧ ϕ̂) | C
Learning Problem: D |̂=θ ϕ̂
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Temporal J48



Entropy-based Learning

Hyafil and Rivest (1976) have proved that computing the optimal decision tree is

an NP-hard problem, and for this reason sub-optimal approaches have been

proposed.

Among others, to tackle such problem, entropy-based learning has been proposed

by Quinlan (1986).
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A Working Implementation: Temporal J48

WEKA offers the implementation of the algorithm C4.5 in Java, called J48.

A natural way to embed the theory of temporal decision trees into C4.5 is to

extend the implementation of J48 into an algorithm which we call Temporal J48.

In addition to J48, Temporal J48 requires the following parameters:

• the value of α (which in this experiment we did not optimize),

• the value zmax (maximum discrete derivative which in this experiment was set

to 0),

• the reference interval policy (how to choose the witnessing existential interval

among many), and

• the subset of HS modalities that one allows during the learning phase.
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Experiments and Results



Data Sets

Dataset Train cases Test cases Channels Length Classes

AtrialFibrillation (AF) 24 6 2 150 3

FingerMovements (FM) 104 26 28 50 2

Libras (LI) 180 45 2 45 15

LSST (LS) 168 42 6 36 14

NATOPS (NA) 96 24 24 51 6

RacketSports (RS) 96 24 6 30 4

SelfRegulationSCP1 (S1) 96 24 6 150 2

SelfRegulationSCP1 (S2) 96 24 7 150 2

UWaveGestureLibrary (UW) 96 24 3 150 8

Table 1: A summary of resampled datasets from Bagnall et. al. (2018).
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Results

Dataset AF FM LI LS NA RS S1 S2 UW

J48 1, 0, 0, 0 83.33 50.00 40.00 30.95 79.17 70.83 66.67 50.00 66.67

J48 1, 1, 0, 0 83.33 42.31 51.11 30.95 75.00 87.50∗ 66.67 54.17 62.50

J48 1, 1, 1, 1 83.33 42.31 64.44 38.10 62.50 79.17 66.67 62.50 54.17

EDI 83.33 76.92 86.67 42.86∗ 70.83 79.17 66.67 66.67 87.50

DTWI 100.00∗ 65.38 91.11∗ 33.33 87.50∗ 75.00 66.67 66.67 91.67

DTWD 83.33 57.69 91.11∗ 40.48 87.50∗ 83.33 83.33∗ 66.67 95.83∗

T. J48 0.5 66.67 57.69 80.00 23.81 83.33 70.83 83.33∗ 54.17 62.50

T. J48 0.6 66.67 57.69 71.11 26.19 79.17 79.17 66.67 75.00∗ 58.33

T. J48 0.7 66.67 53.85 73.33 23.81 75.00 66.67 66.67 66.67 62.50

T. J48 0.8 83.33 80.77∗ 75.56 26.19 75.00 62.50 66.67 62.50 66.67

T. J48 0.9 66.67 80.77∗ 71.11 23.81 66.67 62.50 66.67 70.83 66.67

Table 2: Test results in terms of accuracy. Underlined results are the best ones in the

group, and starred results are the absolute best ones.

Computational resources have been offered by the University of Udine, Italy,

supported by the PRID project Efforts in the uNderstanding of Complex

interActing SystEms (ENCASE)
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Example of Interval-based Temporal Theory

1 <L> var5 <= −2.756591

2 | <InvA> var5 <= 0.308951

3 | | <=> var2 > −0.916901

4 | | | <InvB> var0 <= 2.832243 : Badminton Clear ( 6 . 0 )

5 | | | [ InvB ] var0 > 2 .832243 : Badminton Smash ( 1 . 0 )

6 | | [=] var2 <= −0.916901

7 | | | <B> var3 <= −0.207743

8 | | | | <InvB> var0 > 4.115426

9 | | | | | <D> var0 > 1 .452113 : Squash ForehandBoast ( 3 . 0 )

10 | | | | | [D] var0 <= 1.452113 : Squash BackhandBoast ( 1 . 0 )

11 | | | | [ InvB ] var0 <= 4.115426

12 | | | | | <InvB> var0 <= −0.215688: Badminton Smash ( 2 . 0 )

13 | | | | | [ InvB ] var0 > −0.215688: Badminton Clear ( 3 . 0 )

14 | | | [B] var3 > −0.207743: Squash ForehandBoast ( 1 4 . 0 )

15 | [ InvA ] var5 > 0.308951

16 | | <InvB> var5 <= −2.27452

17 | | | <InvA> var0 <= −1.044682: Squash BackhandBoast ( 3 . 0 / 1 . 0 )

18 | | | [ InvA ] var0 > −1.044682: Squash ForehandBoast ( 7 . 0 )

19 | | [ InvB ] var5 > −2.27452: Squash BackhandBoast ( 2 1 . 0 )

20 [L ] var5 > −2.756591

21 | <A> var0 <= 0.098773

22 | | <InvB> var0 > −0.960139

23 | | | <B> var4 <= 0.625893 : Badminton Smash (16 . 0 )

24 | | | [B] var4 > 0 .625893 : Badminton Clear ( 1 . 0 )

25 | | [ InvB ] var0 <= −0.960139: Badminton Clear ( 2 . 0 )

26 | [A] var0 > 0.098773

27 | | <L> var4 > 8 .703901 : Badminton Smash ( 4 . 0 )

28 | | [ L ] var4 <= 8.703901 : Badminton Clear ( 1 2 . 0 )

Figure 1: One of the Temporal J48 models trained on RacketSports data set.
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Conclusions

We have presented:

• the theory of static decision trees and its extension to the temporal case,

• a symbolic, interpretable method for classifying multivariate time series by

means of temporal decision trees that implements the temporal theory,

• a comparison of our method against other methods that are known in

literature.

We plan to:

• add pruning techniques to our method,

• optimize all parameters (e.g., α, subset of modalities of HS, etc.) in future

experiments,

• extend the temporal theory not only for classification tasks but also for

regression tasks,

• adapt other well-known symbolic learning schemas in the same way.
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Entropy

For a static data set D = {D1, . . . , Dm} with classes C = {C1, C2}, the information

conveyed (or entropy) of D is:

Info(D) = −
2∑
i=1

( |{D ∈ D | C(D) = Ci}|
|D| · log

( |{D ∈ D | C(D) = Ci}|
|D|

))
.

The entropy is inversely proportional to the purity degree of D w.r.t. the class

values.

Observe that the above definition can be applied to a temporal data set T as well.



Entropy-based Learning: Static Data Set

Splitting, which is the main greedy operation in learning a DT, is defined over a

specific attribute A and over ./∈ {≤,=}. In particular, the entropy of

splitting/partitioning D based on the static decision A ./ a is defined as:

InfoSplit(A, a, ./,D) =

2∑
i=1

|Di|
|D| · Info(Di),

where:

• D1 = {D ∈ D | D |= A ./ a}, and

• D2 = {D ∈ D | D 6|= A ./ a}.

The entropy of attribute A is defined as:

InfoAtt(A,D) = min
./∈{≤,=},a∈dom(A)

{InfoSplit(A, a, ./,D)},

and, finally, the information gain of A is defined as:

Gain(A,D) = Info(D)− InfoAtt(A,D).



Entropy-based Learning: Temporal Data Set

C4.5 is designed to allow ID3 to cope with numerical data. Temporal C4.5 is the

natural theoretical extension of C4.5 to deal with undiscretized time series.

Following the presentation, for a temporal data set T , Temporal C4.5 has new

parameters for a temporal decision 〈X〉(Az ./α a), that is:

InfoSplit(A,X, a, ./, α, z, T ) =

2∑
i=1

|Ti|
|T | · Info(Ti),

where:

• X ∈ {A,L,B,E,D,O,A,L,B,E,D,O} ∪ {eq} (equality),

• T1 = {T ∈ T | T, [x, y]  〈X〉(Az ./α a)},
• T2 = {T ∈ T | T, [x, y] 6 〈X〉(Az ./α a)},
• α ∈ (0, 1] ⊂ R, and

• z ≥ 0,

and:

InfoAtt(A, T ) = min
X∈X∪{eq},α∈(0,1],

0≤z≤zmax,a∈dom(A)

{InfoSplit(A,X, a, ./, α, z, T )}.
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