
Non-Simultaneity as a Design Constraint 0/26

Non-Simultaneity as a Design Constraint
TIME 2020

Jean Guyomarc’h, Krono-Safe
François Guerret, Krono-Safe

Bilal El Mejjati, Krono-Safe
Emmanuel Ohayon, Krono-Safe

Bastien Vincke, Université Paris-Saclay
Alain Mérigot, Université Paris-Saclay

September 23, 2020
https://doi.org/10.4230/LIPIcs.TIME.2020.13

https://doi.org/10.4230/LIPIcs.TIME.2020.13

Invalid resource sharing between CPU cores is problematic:
I security issues (e.g. unexpected reads);
I safety issues (e.g. memory corruption).

Widespread solution: critical sections from non-temporized programming
models (e.g. mutual exclusion).
I Lack of safety properties (e.g. possible deadlocks).
I Dynamic behavior (e.g. suboptimal predictability and determinism).
I Fine for most applications.

Motivations

Non-Simultaneity as a Design Constraint 1/26

Safety-critical systems (e.g. airborne navigation):
I strong safety requirements (defects have consequences);
I strip dynamic behaviors (improve predictability and determinism);
I may require worst-case timing analysis (real-time);
I starting to use multi-cores instead of mono-cores.

Goal: enable off-line design of temporized critical sections.
I Fully static approach requiring no preliminary execution ("good by

design").
I Suitable for safety-critical systems with "hard" timing requirements.

Motivations (cont.)

Non-Simultaneity as a Design Constraint 2/26

Motivations

System Model
A temporized model of computation
Simultaneity in a model of computation

Validating the simultaneity constraints
Formalization of the problem
Determination of dates of reachability
Intersection of dates

Conclusions and perspectives

Overview

Non-Simultaneity as a Design Constraint 3/26

Motivations

System Model
A temporized model of computation
Simultaneity in a model of computation

Validating the simultaneity constraints
Formalization of the problem
Determination of dates of reachability
Intersection of dates

Conclusions and perspectives

Overview

Non-Simultaneity as a Design Constraint 4/26

Sequences of computations are encompassed between temporal
constraints:
I (after): earliest start date;
I (before): deadline;

I (synchronization): a deadline defining an earliest start date.

S A B C D

I Nodes denote the temporal constraints.
I Arcs represent the computations that execute between two temporal

constraints.

Time-Constrained Automata (TCA)

Non-Simultaneity as a Design Constraint 5/26

S A B C D

I Scheduling schemes can be derived from TCAs.
I Enable concrete execution from a temporal specification.

S A B C D B

Original work by Lemerre et al. [2010].

Time-Constrained Automata (TCA) (cont.)

Non-Simultaneity as a Design Constraint 6/26

Motivations

System Model
A temporized model of computation
Simultaneity in a model of computation

Validating the simultaneity constraints
Formalization of the problem
Determination of dates of reachability
Intersection of dates

Conclusions and perspectives

Overview

Non-Simultaneity as a Design Constraint 7/26

New semantics added to TCAs: simultaneity.
I Applied to windows of computations that execute within a known and

bounded time span (delimited by synchronous events).
I Two windows of computations are simultaneous if their execution may

overlap in time.

b

a

Figure: Execution with simultaneity

A Definition of Simultaneity

Non-Simultaneity as a Design Constraint 8/26

Clear distinction between:
I model of computation: embodies the design space (based on TCA);

and
I model of execution: embodies the run-time of the designed

application.

Existing work aim at enforcing non-simultaneity as a constraint of the model
of execution (i.e. when generating scheduling schemes).
I Adds another constraint to schedulability analysis.
I Difficult fallback when no feasible solution are found.

System Model

Non-Simultaneity as a Design Constraint 9/26

Our approach to verify non-simultaneity properties is based on the model
of computation.
I Disentangle non-simultaneity analysis from schedulability analysis.
I Both problems can be solved independently.
I Clear separation between temporal design and execution times of

computations.

System Model (cont.)

Non-Simultaneity as a Design Constraint 10/26

System Model:
I Time-Constrained Application: fixed set of (a subset of) TCAs that share

a same unique base clock.
I Synchrony: clock ticks occur simultaneously on all TCAs.
I Exclusion groups: fixed set of temporal transitions (i.e. named arcs)

that shall not overlap in time.
I Isochrony: all TCA can be re-written to exhibit arcs of the same length.

Non-simultaneity is ensured by the safety property that, for each exclusion
group of a time-constrained application, their temporal transitions never
overlap in time.

System Model (cont.)

Non-Simultaneity as a Design Constraint 11/26

τA0
τA2

τA1
τB0

τB1
τB3

τB2

τB4

TCA A TCA B

τA0
τA2

τA2
τA2

τA1
τA1

τA1
τA1

τB0
τB1

τB3
τB1

τB3
τB2

τB4
τB2

Superposition of "unfolded" graphs of TCAs A and B

One exclusion group: {τA1
, τB2

, τB4
}.

Hints that the non-simultaneity property holds. Can we be sure?

Example 1 - Simple

Non-Simultaneity as a Design Constraint 12/26

τA0
τA2

τA1
τB0

τB1
τB3

τB2

τB4

TCA A TCA B

τA0
τA2

τA2
τA2

τA1
τA1

τA1
τA1

τB0
τB1

τB3
τB1

τB3
τB2

τB4
τB2

Superposition of "unfolded" graphs of TCAs A and B

One exclusion group: {τA1
, τB2

, τB4
}.

Hints that the non-simultaneity property holds. Can we be sure?

Example 1 - Simple

Non-Simultaneity as a Design Constraint 12/26

E10 E9

E11

E7

E5

E0

E8

E13 E12

E3E4E14E15

E1E2

E6

E16

G14G15

G13

G9

G11

G16

G3

G0

G17

G6

G10 G2 G12G7

G4

G1

G8

G5

TCA GTCA E

Example 2 - Is it a non-simultaneous system?

Non-Simultaneity as a Design Constraint 13/26

Motivations

System Model
A temporized model of computation
Simultaneity in a model of computation

Validating the simultaneity constraints
Formalization of the problem
Determination of dates of reachability
Intersection of dates

Conclusions and perspectives

Overview

Non-Simultaneity as a Design Constraint 14/26

Motivations

System Model
A temporized model of computation
Simultaneity in a model of computation

Validating the simultaneity constraints
Formalization of the problem
Determination of dates of reachability
Intersection of dates

Conclusions and perspectives

Overview

Non-Simultaneity as a Design Constraint 15/26

Goal: determine dates of reachability for every temporal transition.

Sstart A B

C

D

1
1

1
1

1

1

Figure: Finite automaton formalizing the set of dates at which state C is reachable.

Formalization of the problem

Non-Simultaneity as a Design Constraint 16/26

Goal: determine dates of reachability for every temporal transition.

An isochronous TCA can be understood as a finite automaton, where:
I each state (but the initial one) can be marked as accepting;
I the increment of time, associated to every arc, can be seen as the

symbol of a unary alphabet;
I the set of dates at which a state can be reached is given by the length

of the words that lead to this state.
The set of dates at which a state can be reached is expressed as the
regular language over a unary alphabet accepted by the automaton
where only this state is marked as accepting.

Formalization of the problem (cont.)

Non-Simultaneity as a Design Constraint 17/26

Goal: determine dates of reachability for every temporal transition.

Each regular unary language can be represented as the union of a finite
number of arithmetic progressions of the form {c + dk |k ∈ N}, where:
I c ∈ N is the offset;
I d ∈ N is the period.

These are the sets of word lengths, and therefore are dates.

Formalization of the problem (cont.)

Non-Simultaneity as a Design Constraint 18/26

Motivations

System Model
A temporized model of computation
Simultaneity in a model of computation

Validating the simultaneity constraints
Formalization of the problem
Determination of dates of reachability
Intersection of dates

Conclusions and perspectives

Overview

Non-Simultaneity as a Design Constraint 19/26

I Original algorithm designed by Sawa [2013].
I Used to determine the dates at which one state reachable.
I Time complexity (for one automaton): O(n2(n + m)).
I As-is, yields a total time complexity in O(n3(n + m)).

I Algorithm has been tailored to preserve the original complexity when
processing n− 1 times the same "core" automaton where only the
single accepting state changes.

Determination of dates of reachability

Non-Simultaneity as a Design Constraint 20/26

Motivations

System Model
A temporized model of computation
Simultaneity in a model of computation

Validating the simultaneity constraints
Formalization of the problem
Determination of dates of reachability
Intersection of dates

Conclusions and perspectives

Overview

Non-Simultaneity as a Design Constraint 21/26

E10 E9

E11

E7

E5

E0

E8

E13 E12

E3E4E14E15

E1E2

E6

E16

G14G15

G13

G9

G11

G16

G3

G0

G17

G6

G10 G2 G12G7

G4

G1

G8

G5

TCA GTCA E

Reminder - find overlapping arcs

Non-Simultaneity as a Design Constraint 22/26

An empty intersection of dates implies the non-simultaneity property holds.
With:
I G: exclusion group (set of temporal transitions).
I Dτ : dates at which τ is activated (set of arithmetic progressions).

Solving linear diophantine equation αx + βy = γ.
I (α, β, γ) ∈ N3 given by the values of arithmetic transitions.
I Solution in Z2 iff. gcd(α, β) | γ.
I We are interested in solutions in N2 (dates).
I Here, if we have solutions in Z2, there also exist infinite solutions in N2.

Intersection of dates

Non-Simultaneity as a Design Constraint 23/26

For each pair of temporal transitions in G, if there are no solution to the
linear diophantine equation, then the intersection of dates is empty.

I Arcs originating from a state are reachable at this set of dates.
I Intersection of dates is empty =⇒ non-simultaneity within G

Intersection of dates (cont.)

Non-Simultaneity as a Design Constraint 24/26

Motivations

System Model
A temporized model of computation
Simultaneity in a model of computation

Validating the simultaneity constraints
Formalization of the problem
Determination of dates of reachability
Intersection of dates

Conclusions and perspectives

Overview

Non-Simultaneity as a Design Constraint 25/26

I Model of computation based on TCA to express non-simultaneity as a
design constraint.

I Express a safety property over parallel systems, ensuring that litigious
sequences of computations can never run simultaneously.

I Robust, standalone verification technique based on a formalization of
reachable dates.

Help build systems with non-simultaneity as a design constraint, enabling
safe resources sharing from the ground up.
I Perspectives: help in the identification of critical transitions.

Conclusions

Non-Simultaneity as a Design Constraint 26/26

Non-Simultaneity as a Design Constraint
TIME 2020

Jean Guyomarc’h, Krono-Safe
François Guerret, Krono-Safe

Bilal El Mejjati, Krono-Safe
Emmanuel Ohayon, Krono-Safe

Bastien Vincke, Université Paris-Saclay
Alain Mérigot, Université Paris-Saclay

September 23, 2020
https://doi.org/10.4230/LIPIcs.TIME.2020.13

https://doi.org/10.4230/LIPIcs.TIME.2020.13

Let Da = {ca + dak |k ∈ N} and Db = {cb + dbk |k ∈ N} for set of dates for
temporal transitions a and b in G. Da ∩Db = ∅ iff. the linear diophantine
equation αx + βy = γ has a solution, with:
I (x , y) ∈ Z2;
I α = da;
I β = −db;
I γ = cb − ca.

Intersection of dates

Non-Simultaneity as a Design Constraint 26/26

Solution in Z2 iff. gcd(α, β) | γ.
I Da and Db have in common an infinite set of dates, since for any

solution (x0, y0) the set of solutions {(x0 + dbk , y0 + dak)|k ∈ Z} can
always be built.

I This set of solutions in Z2 contains an infinite number of pairs where both
members are in N2.

This general form has simplifications when one (or both) set of dates are
singletons.

Intersection of dates (cont.)

Non-Simultaneity as a Design Constraint 26/26

Matthieu Lemerre, Vincent David, Christophe Aussagues, and Guy
Vidal-Naquet. An introduction to time-constrained automata. In
Proceedings of the 3rd Interaction and Concurrency Experience
Workshop (ICE’10), volume 38, pages 83–98, june 2010. doi:
10.4204/EPTCS.38.9.

Zdeněk Sawa. Efficient construction of semilinear representations of
languages accepted by unary nondeterministic finite automata.
Fundamenta Informaticae, 123(1):97–106, 2013. doi:
10.3233/FI-2013-802.

References

Non-Simultaneity as a Design Constraint 26/26

	Motivations
	System Model
	A temporized model of computation
	Simultaneity in a model of computation

	Validating the simultaneity constraints
	Formalization of the problem
	Determination of dates of reachability
	Intersection of dates

	Conclusions and perspectives
	References

