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Qualitative Spatial & Temporal Reasoning

QSTR is a major field of study in Knowledge Representation
& Reasoning.

QSTR abstracts from numerical quantities of space and time
by using qualitative descriptions instead (e.g., precedes,
contains, is left of).
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Figure: A qualitative temporal configuration
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Allen’s Interval Algebra (IA) Constraint Language
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Figure: The thirteen base relations of Interval Algebra

M. Sioutis, D. Wolter Dynamic Branching in QCNs via Counting Local Models 3 / 16



Qualitative Constraint Network (QCN)

Definition

A QCN is a pair N = (V ,C ) where V is a non-empty finite set of
variables, and C a mapping C : V × V → 2B.
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Figure: Figurative examples of QCN terminology using Interval Algebra
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Fundamental Reasoning Problems of QCNs

Definition

The satisfiability checking problem of a QCN N is deciding
whether N admits a solution.

Deciding the satisfiability of a QCN is NP-complete in general.

Definition

The minimal labeling problem (MLP) of a QCN N is finding the
strongest implied constraints of N .

The MLP is polynomial-time Turing reducible to the
satisfiability checking problem [GS93].
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Solving via backtracking search

Let us consider a QCN N , we tackle it as follows.

Every relation r forming a constraint in N is split into
subrelations r ′ ⊆ r .

These subrelations r ′ belong to a set of relations A over which
the QCN becomes tractable [RN07].

After every refinement of a relation r into one of its
subrelations r ′, a validity check is performed:

if the refinement is valid, we proceed with the next one;
if the refinement is not valid, we backtrack to the previous one.
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Backtracking search algorithm: branching

Algorithm 1: BacktrackingSearch(N , G , A, f = null)
in/out : A QCN N = (V , C).

in : A graph G = (V , E), a subset A ⊆ 2B, and a function f ∈ {max, min, avg, sum} or null.

output : A refinement of N with respect to G over A, or ⊥V .
1 begin
2 N ← �G (N );

3 if ∅ ∈ �G (N ) then // Validity check

4 return ⊥V ;

5 if ∀{v, v′} ∈ E , C(v, v′) ∈ A then
6 return N ;

7 (v, v′)← {v, v′} ∈ E such that C(v, v′) 6∈ A;

/* Split r into subrelations r′ ∈ A, and dynamically prioritize the selection of those

subrelations according to function f, where null denotes a static selection */

8 foreach r ∈ Selection(N , G ,A, (v, v′), f) do
9 result← Refinement(N[v,v′ ]/r , G , A, f);

10 if result 6= ⊥V then
11 return result;

12 return ⊥V ;
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Problems with static selection

The static strategy

assumes a uniform use of relations in QCNs

does not exploit any structure that may exist in QCNs
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Figure: The static weighting scheme in the literature dictates that relation

during is less restrictive than relation after in general for the IA calculus and,

hence, during should be preferred over after in branching decisions [BM96,

Figure 9], but in the above simplified QCN during is not feasible
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Leveraging local models for dynamic branching

Definition (local models)

Given a QCN N = (V ,C ), a graph G = (V ,E ), and a constraint
C (v , v ′) with {v , v ′} ∈ E , the local models of a base relation b ∈
C (v , v ′) are the atomic refinements S = (V ′,C ′) of N↓V ′ , with
V ′ = {v , v ′, u}, such that {v , u}, {u, v ′} ∈ E and C (v , v ′) = {b}.

We count how many times b participates in the atomic
refinements of each triangle in G involving v and v ′

In that sense, our approach can be seen as being similar to a
counting-based one for CSPs [PQZ12]
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Example

x4 x3

x5 x2

x1

{p, d , fi}

{pi , d ,m}{eq, o, f }

{d , s}

{d ,m,mi}

{p, si , f }

{p, d , di ,m,mi , s, si}

{di , s, f }{di}

B

b #l-models
p 6
d 6
di 7
m 4
mi 5
s 3
si 3

Figure: Given the above QCN N = (V ,C) of IA, a partition of C(x3, x4) with

respect to the subset HIA [NB95] is {{mi}, {di , si}, {p,m}, {d , s}}; the

number of local models for each base relation is shown in the table
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Dynamic selection strategies

We devise the following strategies for choosing a subrelation from
a given set of subrelations:

dynamic f: for each subrelation r ′ find the f count of local
models among each base relation b ∈ r ′, where f ∈
{max,min, avg, sum}, then choose the subrelation for which
the highest such count was obtained.

In short dynamic max, dynamic min, dynamic avg, and
dynamic sum prioritize the subrelation with the best most, least,
on avegare, and in aggregate supportive base relation respectively.
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Example (revisited)
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Figure: Strategies dynamic avg and dynamic sum would prioritize subrelation

{p,m}, and strategies static [BM96], dynamic max, and dynamic min would

prioritize subrelations {d , s}, {di , si}, and {mi} respectively
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Evaluation (1/2)
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Figure: Insight into the 0.5th percentile of most difficult instances of model

H(n = 40, d) [Neb97] for each strategy
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Evaluation (2/2)
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Figure: Insight into the 0.5th percentile of most difficult instances of model

BA(n = 80,m, 3CNF) [SCK16] for each strategy
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Conclusion and Future Work

We introduced and evaluated dynamic branching strategies for
solving QCNs via backtracking search.

Our approach is adaptive; it preserves most of the (global)
solutions by determining what proportion of local solutions
agree with a branching decision.

We can obtain 5 times better performance for structured
instances of IA, and up to 20% gains for random ones.

We aim to devise selection protocols that choose among
different strategies, and implement them as portfolios.

More sophisticated dynamic heuristics could be developed by
engaging larger parts of an instance.
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Thank you for your interest and attention!
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