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Motivation

Context: temporal reasoning with transition systems.

Typical reasoning problems:
simulation, explanation, planning, diagnosis, verification.

. . . but focusing on Knowledge Representation (KR)

Problem
instances

Specification of
system behaviour

Tool Solutions
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Keypoint: representation

Which are the desirable properties of a good KR?
1 Simplicity

2 Natural understanding: clear semantics

3 Allows automated reasoning methods that:
I are efficient
I or at least, their complexity can be assessed

4 Elaboration tolerance [McCarthy98]

Small changes in the problem⇒ small changes in specification

Typical problems of lack of elaboration:
frame, ramification, qualification

Example: automata satisfy everything, but lack elaboration
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Temporal ASP

Elaboration tolerance for action domains:

Representing Action and Change by Logic Programs
[Gelfond & Lifschitz 93] use Answer Set Programming (ASP)

However, ASP has no temporal constructs
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Transition systems in ASP

Example
Initially, a lamp switch can be up or down.

By default, the switch state persists by inertia,
but we can arbitrarily close it at any moment.

up

down

time(0..n).
up(0);down(0).

up(T+1) :- up(T), not down(T+1), time(T).
down(T+1) :- down(T), not up(T+1), time(T).

{up(T)} :- time(T).
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An example

Examples of problems that cannot be solved in ASP:

Is there a reachable state with up and down false?

Once up becomes true, does it remain so forever?

The switch cannot be closed infinitely often without eventually
damaging the lamp
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Modal Temporal Logic

These topics typically covered by (Modal) Temporal Logics

A simple and well-known case

Linear-time Temporal Logic (LTL)
� (forever), ♦ (eventually), ◦ (next), U (until)

X Decidable inference methods. Satisfiability: PSPACE-complete

X Relation to other mathematical models:
algebra, automata, formal languages

X Fragment of First-Order Logic: [Kamp 68] LTL = Monadic FO (<)

X Model checking and verification of reactive systems

X Many uses in AI: planning, ontologies, multi-agent systems, . . .
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Modal Temporal Logic

A simple and well-known example

Linear-time Temporal Logic (LTL)
�, ♦, ◦, U . . .

7 Monotonic: action domain representations manifest frame problem

In model checking no worry on this:
usually, logical description of automaton states
even worse! nothing less elaboration tolerant than an automaton

7 NMR attempts for LTL: limited syntax, only for queries, control
rules, etc. Not really embodied in LTL
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Our proposal

Temporal Equilibrium Logic (TEL) [C_&Pérez 07]

TEL = ASP + LTL

ASP: logical characterisation Equilibrium Logic [Pearce 96]

LTL: We add temporal operators �, ♦, ◦, U, R.

Result: Temporal Stable Models for any arbitrary LTL theory.
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Example

Example
Initially, a lamp switch can be closed (p) or open (q).
By default, the switch state persists by inertia,
but we can arbitrarily close it at any moment.

up

down

time(0..n).
up(0),down(0).

up(T+1) :- up(T), not down(T+1), time(T).
down(T+1) :- down(T), not up(T+1), time(T).

{up(T)} :- time(T).

Idea: LTL syntax, but keeping ASP semantics
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Equilibrium Logic

Equilibrium Logic [Pearce96]: generalises stable models for arbitrary
propositional theories.

Consists of:

1 A non-classical monotonic (intermediate) logic called
Here-and-There (HT)

HT models

Classical models

2 A selection of (certain) minimal models that yields
nonmonotonicity
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Here-and-There

Interpretation = pairs 〈H,T 〉 of sets of atoms H ⊆ T

Example: H = {p,q},T = {p,q, r , s}. Intuition:

There = perhaps true

Here = proved
p

r

sq

wt
Not there = false

When H = T we have a classical model.
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Here-and-There

Satisfaction of formulas
〈H,T 〉 |= ϕ ⇔ “ϕ is proved”

〈T ,T 〉 |= ϕ ⇔ “ϕ potentially true” ⇔ T |= ϕ classically

〈H,T 〉 |= p if p ∈ H (for any atom p)

∧,∨ as always

〈H,T 〉 |= ϕ→ ψ if both

- T |= ϕ→ ψ classically
- 〈H,T 〉 |= ϕ implies 〈H,T 〉 |= ψ

Negation ¬F is defined as F → ⊥

〈H,T 〉 |= ϕ implies T |= ϕ (proved implies potentially true)
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Equilibrium models

Definition (Equilibrium/stable model)
A model 〈T ,T 〉 of Γ is an equilibrium model iff

there is no H ⊂ T such that 〈H,T 〉 |= Γ.

When this holds, T is called a stable model.

In other words, all assumptions T are eventually proved H
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(Linear) Temporal Equilibrium Logic

Syntax = propositional plus
I �ϕ = “forever” ϕ
I ♦ϕ = “eventually” ϕ
I ◦ϕ = “next moment” ϕ
I ϕ U ψ = ϕ “until eventually” ψ
I ϕ R ψ = ϕ “release” ψ
I ϕ W ψ = ϕ “while” ψ

As we had with Equilibrium Logic:

1 A monotonic underlying logic: Temporal Here-and-There (THT)

2 An ordering among models. Select minimal models.
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Sequences

In standard LTL, interpretations are∞ sequences of sets of atoms

 {p, q} {p}    {q}   {  }  {p, q} . . .

0 1 2 3 4

In THT we will have∞ sequences of HT interpretations

. . .

0 1 2 3 4
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Sequences

We define an ordering among sequences H ≤ T when

T0 // T1 // T2 // . . . // Ti // . . .⋃
|

⋃
|

⋃
|

⋃
|

H0 // H1 // H2 // . . . // Hi // . . .

Definition (THT-interpretation)
is a pair of sequences of sets of atoms 〈H,T〉 with H ≤ T.
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Temporal Here-and-There (THT)

〈H,T〉, i |= ϕ ⇔ “ϕ is proved at i”

〈T,T〉, i |= ϕ ⇔ “ϕ potentially true at i” ⇔ T, i |= ϕ in LTL

An interpretation M = 〈H,T〉 satisfies α at situation i , written
M, i |= α

α M, i |= α when . . .
an atom p p ∈ Hi

∧,∨ as usual

ϕ→ ψ T, i |= ϕ→ ψ in LTL and
〈H,T〉, i |= ϕ implies 〈H,T〉, i |= ψ
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〈T,T〉, i |= ϕ ⇔ “ϕ potentially true at i” ⇔ T, i |= ϕ in LTL

An interpretation M = 〈H,T〉 satisfies α at situation i , written
M, i |= α

α M, i |= α when . . .
◦ϕ (M, i +1) |= ϕ
�ϕ ∀j ≥ i , M, j |= ϕ
♦ϕ ∃j ≥ i , M, j |= ϕ
ϕ U ψ ∃j ≥ i , M, j |= ψ and ∀k s.t. i ≤ k < j , M, k |= ϕ
ϕ R ψ ∀j ≥ i , M, j |= ψ or ∃k , i ≤ k < j , M, k |= ϕ

M is a model of a theory Γ when M,0 |= α for all α ∈ Γ
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(Linear) Temporal Equilibrium Logic

◦ϕ
ϕ

• // • // • // . . . // • // . . .

�ϕ
ϕ ϕ ϕ ϕ

• // • // • // . . . // • // . . .

♦ϕ
ϕ

• // • // • // . . . // • // . . .
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(Linear) Temporal Equilibrium Logic

ϕ U ψ = repeat ϕ until (mandatorily) ψ

ϕ ϕ ϕ ϕ ψ

• // • // • // . . . // • // • // . . .
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(Linear) Temporal Equilibrium Logic

ϕ R ψ = disjunction of two cases
ψ U (ψ ∧ ϕ)

ψ ψ ψ ψ ∧ ϕ

• // • // • // . . . // • // • // . . .

�ψ

ψ ψ ψ ψ ψ

• // • // • // . . . // • // • // . . .
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(Linear) Temporal Equilibrium Logic

ϕ W ψ = do ϕ while ψ

ψ? ψ? ψ?

ϕ

• // • // • // • // • // . . .
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Temporal Here-and-There (THT)

Some valid THT formulas:

♦ϕ ↔ > U ϕ
�ϕ ↔ ⊥ R ϕ

◦(ϕ⊗ ψ) ↔ ◦ϕ⊗ ◦ψ
ϕ U ψ ↔ ψ ∨ (ϕ ∧ ◦(ϕ U ψ))
ϕ R ψ ↔ ψ ∧ (ϕ ∨ ◦(ϕ R ψ))
ϕ W ψ ↔ ϕ ∧ (ψ → ◦(ϕ W ψ))

¬(ϕ U ψ) ↔ ¬ϕ R ¬ψ
◦¬ϕ ↔ ¬◦ϕ

¬(ϕ R ψ) ↔ ¬ϕ U ¬ψ

For ⊗ = ∧,∨,→,U,R.

Axiomatization of THT [Balbiani & Diéguez 16]
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Temporal Equilibrium Models

Definition (Temporal Equilibrium Model)
of a theory Γ is a model M = 〈T,T〉 of Γ such that there is no H < T
satisfying 〈H,T〉,0 |= Γ.

Temporal Equilibrium Logic (TEL) is the logic induced by temporal
equilibrium models.

Definition (Temporal Stable Model)
T is a temporal stable model of a theory Γ iff 〈T,T〉 is a temporal
equilibrium model of Γ.
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Some examples

Example 1: TEL models of �(¬p → ◦p). It’s like an infinite
program:

¬p → ◦p
¬◦p → ◦2p
¬◦2p → ◦3p

...

TEL models have the form

∅ p ∅ p ∅

• // • // • // • // • // . . .

corresponding to LTL models of ¬p ∧�(¬p ↔ ◦p).
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Some examples

Example 2: consider TEL models of ♦p

is like p ∨ ◦p ∨ ◦◦p ∨ . . .
TEL models have the form

∅ ∅ ∅ p ∅

• // • // . . . // • // • // • // . . .

corresponding to LTL models of ¬p U (p ∧ ◦�¬p)
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An example

In ASP terms, how can we represent temporal stable models?
infinitely long! infinitely many!

q0 q1

∅

{p}

∅

Answer: using Büchi automata. An infinite-length word is
accepted iff it visits some acceptance state infinitely often
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Some examples

Example 3: consider TEL models of �♦p
In LTL this means p occurs infinitely often.

So take any LTL model T like that, i.e., 〈T,T〉 is a total THT model.

Now build some H < T by removing one p at some point. But then
〈H,T〉 is also a model since H contains∞− 1 =∞ p’s yet!

Therefore, �♦p alone has no TEL models.
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Some examples

We can still express infinitely often by disabling minimality of p

This can be done adding the (excluded middle) axiom

�(p ∨ ¬p) (EM)

(a choice rule in ASP)

In fact, if we add (EM) for all atoms, TEL collapses into LTL
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Some examples

Example 4: consider TEL models of the pair of formulas

�(¬◦p → p)

�(◦p → p)

Curiosity: implications go backwards in time
This is LTL-equivalent to:

�
(
(¬◦p → p) ∧ (◦p → p)

)
≡ �

(
¬◦p ∨ ◦p︸ ︷︷ ︸

>

→ p
)

≡ �p
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Some examples

Example 4: consider TEL models of the pair of formulas

�(¬◦p → p)

�(◦p → p)

So LTL models make p true forever,

but we won’t get TEL models!

We can build a strictly smaller model with H where from some
point on T, p becomes false forever

T p p p p p

|| || ||
⋃ ⋃

H p p p ∅ ∅

• // • // . . . // • // • // • // . . .
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We can build a strictly smaller model with H where from some
point on T, p becomes false forever

T p p p p p

|| || ||
⋃ ⋃

H p p p ∅ ∅

• // • // . . . // • // • // • // . . .
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Some examples

Example 5: lamp switch again

up

down

up ∨ down Initially

�(up ∧ ¬◦down → ◦up) Inertia
�(down ∧ ¬◦up → ◦down) Inertia

�(up ∨ ¬up) Choice

q0 q1

{down} {up}

{up}

We never get up ∧ down
Once up is true, it remains so forever
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Some properties

Reasonable behavior when theories “look like” logic programs

But what happens with arbitrary temporal formulas?
e.g. ♦p ∧ (¬�♦q → ♦(p U q))

Kamp’s translation into MFO(<) is applicable to TEL!

Example Kamp[ �(¬p → ◦p) ] amounts to:

∀x ( ¬p(x)→ ∃y (y = x + 1 ∧ p(y)) )

Temporal equilibrium models of ϕ are in one-to-one relation to
Equilibrium Models of the first order formula Kamp[ϕ]

FO-Equilibrium Logic is the most general logical characterisation
of ASP
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1. Enconding THT into LTL

THT can be encoded into LTL, adding auxiliary atoms
using the same translation of→ from HT to classical logic

Intuition: p will represent p ∈ T whereas p′ will mean p ∈ H

Example

THT LTL
�(down ∧ ¬◦up → ◦down) ≡ �(up′ → up) ∧�(down′ → down)

∧�(down ∧ ¬◦up → ◦down)
∧�(down′ ∧ ¬◦up → ◦down′)
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1. Encoding THT into LTL

Warning: this does not mean that we can
encode Temporal Stable Models as models of an LTL theory!

This is an open question
(failed attempt [C_ & Diéguez, ASPOCP’14])

We know it holds for some fragments (splittable temporal
programs)

THT-satisfiability = PSPACE-complete [C_ & Demri 11]
TEL-satisfiability = EXPSPACE-complete [Bozzelli & Pearce 15]
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Automata-based methods

[C_ & Demri 2011]

Definition (Automata Based Computation Method)

LTL (i. e. total) models which do not have a strictly smaller 〈H,T 〉

Aϕ ⊗ h(Aϕ′)

Intuition: Aϕ′ captures the 〈H,T〉 satisfying H < T

We use the ϕ∗ translation and force non-LTL models.
Example: if ϕ = ♦up then

ϕ′ = ♦up′ ∧�(up′ → up) ∧ ♦(up ∧ ¬up′)

Operation h(Aϕ′) filters out the auxiliary atoms p′

Büchi automata are closed w.r.t. complementation and
intersection
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Example

up ∨ down.
� (up ∧ ¬◦down→ ◦up) .

� (down ∧ ¬◦up → ◦down) .

� (up ∨ ¬up)

down ∧ ¬up

¬down ∧ up

¬down ∧ up
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Example

up ∨ down.
� (up ∧ ¬◦down→ ◦up) .

� (down ∧ ¬◦up → ◦down) .

� (up ∨ ¬up)

♦�up → � stuck .

down ∧ ¬up

¬down ∧ up

¬down ∧ up
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Example

up ∨ down.
� (up ∧ ¬◦down→ ◦up)

� (down ∧ ¬◦up → ◦down)

� (up ∨ ¬up)

♦�up → �stuck
do

w
n
∧

st
uc

k
∧
¬u

p

¬down ∧ stuck ∧ up

down ∧ ¬stuck ∧ ¬up

down ∧ stuck ∧ ¬up

¬down ∧ stuck ∧ up

¬down ∧ stuck ∧ up

down ∧ ¬stuck ∧ ¬up
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Finite traces and past operators

LTLf = LTL for finite traces [De Giacomo & Vardi 13]

Closer to ASP problem solving strategy:
solutions for planning, diagnosis, explanation, . . . are finite

Natural representation of dynamic rules: [Gabbay 87]

declarative past→ imperative future

Adding past operators to LTL: same expressiveness but
exponentially more succint [Markey 03]
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Finite traces and past operators

Past • for previous
S for since
T for trigger

Future ◦ for next
U for until
R for release
W for while

�ϕ
def
= ⊥ T ϕ always before

�ϕ
def
= > S ϕ eventually before

I def
= ¬•> initial

•̂ϕ def
= •ϕ ∨ I weak previous

�ϕ
def
= ⊥ R ϕ always after

♦ϕ
def
= > U ϕ eventually after

F def
= ¬> final

◦̂ϕ def
= ϕ ∨ F weak next
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Finite traces and past operators

Satisfaction of formulas introduces conditions on trace limits on
the past (i ≥ 0) and the future (i < λ)

α M, i |= α when . . .
◦ϕ i + 1 < λ and (M, i +1) |= ϕ

◦̂ϕ i + 1 = λ or (M, i +1) |= ϕ
ϕ U ψ ∃j : i ≤ j < λ, M, j |= ψ and ∀k s.t. i ≤ k < j , M, k |= ϕ

•ϕ i > 0 and (M, i−1) |= ϕ

•̂ϕ i = 0 or (M, i−1) |= ϕ
ϕ S ψ ∃j : 0 ≤ j ≤ i , M, j |= ψ and ∀k s.t. j < k ≤ i , M, k |= ϕ

When λ = ω we get (infinite-traces) TEL as before
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Normal form

Temporal theories can be reduced to a normal form closer to logic
programs

temporal literals = {a,¬a,•a,¬•a | a ∈ Atoms}

Definition (Temporal rule)
A temporal rule is either:

an initial rule B → A
a dynamic rule ◦̂�(B → A)

a fulfillment rule �(�p → q ) or �( p → ♦q )

where B = b1 ∧ · · · ∧ bn with n ≥ 0, A = a1 ∨ · · · ∨ am with m ≥ 0
bi ,aj = temporal literals for dynamic rules
bi ,aj = regular literals a,¬a for initial rules
p,q = atoms

A temporal logic program is a set of temporal rules.
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Definition (Temporal rule)
A temporal rule is either:

an initial rule B → A
a dynamic rule ◦̂�(B → A)

a final rule �( F→ (B → A) ) when traces are finite
where B = b1 ∧ · · · ∧ bn with n ≥ 0, A = a1 ∨ · · · ∨ am with m ≥ 0
bi ,aj = temporal literals for dynamic rules
bi ,aj = regular literals a,¬a for initial rules
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Syntactic Fragment

An interesting fragment are present-centered programs
I initial rule B → A
I dynamic rule ◦̂�(B → A)
I final rule �( F→ (B → A) )

present-centered = A does not contain temporal operators

Example of present-centered program:

up ∨ down Initially

◦̂�(•up ∧ ¬down → up) Inertia
◦̂�(•down ∧ ¬up → down) Inertia

�(up ∨ ¬up) Choice
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Syntactic Fragment

Tool telingo [C_, Kaminski, Morkisch & Schaub 19]
Temporal extension of ASP solver clingo

#program initial.
up;down.

#program dynamic.
up :- ’up, not down.
down :- ’down, not up.

#program always.
{up}.
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Syntactic Fragment

We can use a more general syntactic fragment
past-future = α→ β where

I α may only contain past operators
I β may only contain future operators

and none of them contains→

Example: the integrity constraint

shoot ∧�unloaded ∧ •�shoot → ⊥

can be expressed in telingo as:

:- shoot, &tel { <* unloaded & < <? shoot }.
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Beyond LTL

In [Bosser et al. 18, C_ et al. 19] we extend TEL and TELf to the
syntax of Linear Dynamic Logic (LDL) [De Giacomo & Vardi 13]

DEL = LDL + ASP.

Example:

⊥¬ ← 〈 ( (up∗ + down∗); ready?; serve )∗; wait∗〉F
elevator moving in a unique direction until the call is served

[C_ et al, ECAI 20] LDL operators implemented in telingo (only
in constraints)

#program initial.
:- not &del{ *( (*up + *down) ;; ?ready ;; serve)

;; *wait .>? &final }.
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Beyond LTL

� In [C_ et al, ICLP 20] (/Tomorrow 18:15)
we introduce metric operators

�(red ∧ green→ ⊥)

�(¬green→ red)

�(push→ ♦3�4green)

The traffic light is red by default

when we push it, it takes at most 3 steps to stay green for 4 steps

We extended this for intervals (only discrete by now).
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Conclusions

� Forthcoming survey: [Aguado et al. 2020] (under review)
TPLP 20th anniversary special issue

TEL = suitable framework for temporal reasoning + ASP

Simple semantics thanks to just merging two logical formalisms:
Equilibrium Logic + LTL.

Implementations: telingo, abstem, stelp

It constitutes a new open field. Many open topics . . .

Pedro Cabalar ( University of Corunna (Spain) cabalar@udc.es[10pt] )Temporal Modalities in ASP TIME 2020 56 / 58



Conclusions

� Forthcoming survey: [Aguado et al. 2020] (under review)
TPLP 20th anniversary special issue

TEL = suitable framework for temporal reasoning + ASP

Simple semantics thanks to just merging two logical formalisms:
Equilibrium Logic + LTL.

Implementations: telingo, abstem, stelp

It constitutes a new open field. Many open topics . . .

Pedro Cabalar ( University of Corunna (Spain) cabalar@udc.es[10pt] )Temporal Modalities in ASP TIME 2020 56 / 58



Open topics

Open theoretical problems:
I Kamp’s theorem: monadic EL(<) can be transformed into THT?

(possibly not)
I Interdefinability of operators
I Can temporal stable models be captured by LTL?

Finite traces: axiomatisation, automata-based methods, grounding

New syntactic subclasses with satisfiability lower than EXPSPACE

[Bozzelli & Pearce 15]

Planning tool. Compare to planners using LTL control knowledge
like TLPlan [Bacchus & Kabanza 00].

Encoding action languages
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