Temporal Modalities in Answer Set Programming

Pedro Cabalar

University of Corunna (Spain) cabalar@udc.es

September 23rd, 2020 TIME 2020, Bozen-Bolzano, Italy

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Joint work with

Felicidad Aguado U. Corunna Gilberto Pérez U. Corunna

Concepción Vidal U. Corunna

Martín Diéguez U. Angers

Torsten Schaub U. Potsdam

Anna Schuhmann U. Potsdam

-

Other collaborators:

- Jorge Fandinno, Roland Kaminski, François Laferriere, Philip Morkisch (U. Potsdam, DE)
- Philippe Balbiani, Luis Fariñas del Cerro (IRIT, Toulouse, FR)
- David Pearce (U. P. Madrid, ES)
- Stephane Demri (CNRS, ENS Paris-Saclay, FR)
- Laura Bozzelli (U. Naples, IT)

A (10) > A (10) > A (10)

- 2 Definitions and examples
- 3 Automata-based computation
- 4 Temporal Logic Programming
- 5 Conclusions and open topics

4 A N

- Context: temporal reasoning with transition systems.
- Typical reasoning problems: simulation, explanation, planning, diagnosis, verification.

- Context: temporal reasoning with transition systems.
- Typical reasoning problems: simulation, explanation, planning, diagnosis, verification.
- ... but focusing on Knowledge Representation (KR)

• • • • • • • • • • • •

- Context: temporal reasoning with transition systems.
- Typical reasoning problems: simulation, explanation, planning, diagnosis, verification.
- ... but focusing on Knowledge Representation (KR)

Pedr	o Ca	balar
------	------	-------

• • • • • • • • • • • •

- Context: temporal reasoning with transition systems.
- Typical reasoning problems: simulation, explanation, planning, diagnosis, verification.
- ... but focusing on Knowledge Representation (KR)

< □ > < 同 > < 回 > < 回 > < 回

Keypoint: representation

Which are the desirable properties of a good KR?

- Simplicity
- 2 Natural understanding: clear semantics
- Allows automated reasoning methods that:
 - are efficient
 - or at least, their complexity can be assessed

< (□) < 三 > (□)

Which are the desirable properties of a good KR?

- Simplicity
- 2 Natural understanding: clear semantics
- Allows automated reasoning methods that:
 - are efficient
 - or at least, their complexity can be assessed
- Elaboration tolerance [McCarthy98]

Small changes in the problem \Rightarrow small changes in specification

Which are the desirable properties of a good KR?

- Simplicity
- 2 Natural understanding: clear semantics
- Allows automated reasoning methods that:
 - are efficient
 - or at least, their complexity can be assessed
- Elaboration tolerance [McCarthy98]

Small changes in the problem \Rightarrow small changes in specification

Typical problems of lack of elaboration: frame, ramification, qualification

< 同 > < 回 > .

Which are the desirable properties of a good KR?

- Simplicity
- Natural understanding: clear semantics
- Allows automated reasoning methods that:
 - are efficient
 - or at least, their complexity can be assessed
- Elaboration tolerance [McCarthy98]

Small changes in the problem \Rightarrow small changes in specification

Typical problems of lack of elaboration: frame, ramification, qualification

Example: automata satisfy everything, but lack elaboration

• • • • • • • • • • • •

• Elaboration tolerance for action domains:

Representing Action and Change by Logic Programs [Gelfond & Lifschitz 93] use Answer Set Programming (ASP)

• • • • • • • • • • • •

• Elaboration tolerance for action domains:

Representing Action and Change by Logic Programs [Gelfond & Lifschitz 93] use Answer Set Programming (ASP)

However, ASP has no temporal constructs

< 🗇 🕨 < 🖃 🕨

• Initially, a lamp switch can be *up* or *down*.

Pedro	Cab	alar
-------	-----	------

• • • • • • • • • • • • •

- Initially, a lamp switch can be *up* or *down*.
- By default, the switch state persists by inertia,

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Initially, a lamp switch can be *up* or *down*.
- By default, the switch state persists by inertia,
- but we can arbitrarily close it at any moment.

< ロ > < 同 > < 回 > < 回 >

Examples of problems that cannot be solved in ASP:

• Is there a reachable state with up and down false?

• • • • • • • • • • • •

Examples of problems that cannot be solved in ASP:

- Is there a reachable state with up and down false?
- Once up becomes true, does it remain so forever?

Examples of problems that cannot be solved in ASP:

- Is there a reachable state with up and down false?
- Once up becomes true, does it remain so forever?
- The switch cannot be closed infinitely often without eventually damaging the lamp

These topics typically covered by (Modal) Temporal Logics

(I) < ((()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) < (()) <

These topics typically covered by (Modal) Temporal Logics

A simple and well-known case

Linear-time Temporal Logic (LTL)

 \Box (forever), \Diamond (eventually), \circ (next), U (until)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

These topics typically covered by (Modal) Temporal Logics

A simple and well-known case

Linear-time Temporal Logic (LTL)

 \Box (forever), \Diamond (eventually), \circ (next), U (until)

✓ Decidable inference methods. Satisfiability: PSPACE-complete

・ロト ・ 同ト ・ ヨト ・ ヨ

These topics typically covered by (Modal) Temporal Logics

A simple and well-known case

Linear-time Temporal Logic (LTL)

 \Box (forever), \Diamond (eventually), \circ (next), ${\bf U}$ (until)

- ✓ Decidable inference methods. Satisfiability: PSPACE-complete
- Relation to other mathematical models: algebra, automata, formal languages

These topics typically covered by (Modal) Temporal Logics

A simple and well-known case

Linear-time Temporal Logic (LTL)

 \Box (forever), \Diamond (eventually), \circ (next), U (until)

- ✓ Decidable inference methods. Satisfiability: PSPACE-complete
- ✓ Relation to other mathematical models: algebra, automata, formal languages
- ✓ Fragment of First-Order Logic: [Kamp 68] LTL = Monadic FO (<)

< ロ > < 同 > < 回 > < 回 >

These topics typically covered by (Modal) Temporal Logics

A simple and well-known case

Linear-time Temporal Logic (LTL)

 \Box (forever), \Diamond (eventually), \circ (next), ${\bf U}$ (until)

- ✓ Decidable inference methods. Satisfiability: PSPACE-complete
- ✓ Relation to other mathematical models: algebra, automata, formal languages
- ✓ Fragment of First-Order Logic: [Kamp 68] LTL = Monadic FO (<)
- $\checkmark\,$ Model checking and verification of reactive systems

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

These topics typically covered by (Modal) Temporal Logics

A simple and well-known case

Linear-time Temporal Logic (LTL)

 \Box (forever), \Diamond (eventually), \circ (next), ${\bf U}$ (until)

- ✓ Decidable inference methods. Satisfiability: PSPACE-complete
- ✓ Relation to other mathematical models: algebra, automata, formal languages
- ✓ Fragment of First-Order Logic: [Kamp 68] LTL = Monadic FO (<)
- ✓ Model checking and verification of reactive systems
- ✓ Many uses in AI: planning, ontologies, multi-agent systems, ...

Linear-time Temporal Logic (LTL) \Box , \diamond , \circ , **U**...

X Monotonic: action domain representations manifest frame problem

Linear-time Temporal Logic (LTL) \Box , \diamond , \circ , **U**...

X Monotonic: action domain representations manifest frame problem

In model checking no worry on this: usually, logical description of automaton states

Linear-time Temporal Logic (LTL) \Box , \diamond , \circ , **U**...

X Monotonic: action domain representations manifest frame problem

In model checking no worry on this: usually, logical description of automaton states even worse! nothing less elaboration tolerant than an automaton

Linear-time Temporal Logic (LTL) \Box , \diamond , \circ , **U**...

X Monotonic: action domain representations manifest frame problem

In model checking no worry on this: usually, logical description of automaton states even worse! nothing less elaboration tolerant than an automaton

X NMR attempts for LTL: limited syntax, only for queries, control rules, etc. Not really embodied in LTL

Our proposal

Temporal Equilibrium Logic (TEL) [C_&Pérez 07] TEL = ASP + LTL

• ASP: logical characterisation Equilibrium Logic [Pearce 96]

• LTL: We add temporal operators \Box , \Diamond , \circ , U, R.

Result: Temporal Stable Models for any arbitrary LTL theory.

- Initially, a lamp switch can be closed (*p*) or open (*q*).
- By default, the switch state persists by inertia,
- but we can arbitrarily close it at any moment.

- Initially, a lamp switch can be closed (*p*) or open (*q*).
- By default, the switch state persists by inertia,
- but we can arbitrarily close it at any moment.

Idea: LTL syntax, but keeping ASP semantics

イロト イヨト イヨト イヨト

3 Automata-based computation

- 4 Temporal Logic Programming
- 5 Conclusions and open topics

< 🗇 🕨

Equilibrium Logic

Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories. Consists of:

 A non-classical monotonic (intermediate) logic called Here-and-There (HT)

< 🗇 🕨 < 🖻 🕨

Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories. Consists of:

 A non-classical monotonic (intermediate) logic called Here-and-There (HT)

A selection of (certain) minimal models that yields nonmonotonicity

Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories. Consists of:

 A non-classical monotonic (intermediate) logic called Here-and-There (HT)

A selection of (certain) minimal models that yields nonmonotonicity

Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories. Consists of:

 A non-classical monotonic (intermediate) logic called Here-and-There (HT)

A selection of (certain) minimal models that yields nonmonotonicity

Equilibrium Logic [Pearce96]: generalises stable models for arbitrary propositional theories. Consists of:

 A non-classical monotonic (intermediate) logic called Here-and-There (HT)

A selection of (certain) minimal models that yields nonmonotonicity

• Interpretation = pairs $\langle H, T \rangle$ of sets of atoms $H \subseteq T$

- Interpretation = pairs $\langle H, T \rangle$ of sets of atoms $H \subseteq T$
- Example: $H = \{p, q\}, T = \{p, q, r, s\}.$

- Interpretation = pairs $\langle H, T \rangle$ of sets of atoms $H \subseteq T$
- Example: $H = \{p, q\}, T = \{p, q, r, s\}$. Intuition:

• When H = T we have a classical model.

 $\begin{array}{l} \text{Satisfaction of formulas} \\ \langle H, T \rangle \models \varphi \quad \Leftrightarrow \quad ``\varphi \text{ is proved"} \end{array}$

Satisfaction of formulas

$$\begin{array}{lll} \langle H,T\rangle\models\varphi &\Leftrightarrow \quad "\varphi \text{ is proved"} \\ \langle T,T\rangle\models\varphi &\Leftrightarrow \quad "\varphi \text{ potentially true"} &\Leftrightarrow \quad T\models\varphi \text{ classically} \end{array}$$

イロト イヨト イヨト イヨト

Satisfaction of formulas

 $\begin{array}{lll} \langle H,T\rangle\models\varphi &\Leftrightarrow \quad ``\varphi \text{ is proved"} \\ \langle T,T\rangle\models\varphi &\Leftrightarrow \quad ``\varphi \text{ potentially true"} &\Leftrightarrow \quad T\models\varphi \text{ classically} \end{array}$

• $\langle H, T \rangle \models p$ if $p \in H$ (for any atom p)

Satisfaction of formulas

- $\langle H, T \rangle \models p$ if $p \in H$ (for any atom p)
- $\bullet \ \land, \lor \text{ as always }$

Satisfaction of formulas

 $\begin{array}{lll} \langle H, T \rangle \models \varphi & \Leftrightarrow & "\varphi \text{ is proved"} \\ \langle T, T \rangle \models \varphi & \Leftrightarrow & "\varphi \text{ potentially true"} & \Leftrightarrow & T \models \varphi \text{ classically} \end{array}$

- $\langle H, T \rangle \models p$ if $p \in H$ (for any atom p)
- \land,\lor as always
- $\langle H, T \rangle \models \varphi \rightarrow \psi$ if both
 - $T \models \varphi \rightarrow \psi$ classically
 - $\langle H, T \rangle \models \varphi$ implies $\langle H, T \rangle \models \psi$

Satisfaction of formulas

 $\begin{array}{lll} \langle H,T\rangle\models\varphi &\Leftrightarrow \quad \text{``}\varphi \text{ is proved''} \\ \langle T,T\rangle\models\varphi &\Leftrightarrow \quad \text{``}\varphi \text{ potentially true''} &\Leftrightarrow \quad T\models\varphi \text{ classically} \end{array}$

- $\langle H, T \rangle \models p$ if $p \in H$ (for any atom p)
- ∧, ∨ as always
- $\langle H, T \rangle \models \varphi \rightarrow \psi$ if both
 - $\begin{array}{l} \text{-} \quad \textit{$T \models \varphi \rightarrow \psi$ classically$}\\ \text{-} \quad \langle \textit{$H, T \rangle \models \varphi$ implies } \langle \textit{$H, T \rangle \models \psi$} \end{array}$
- Negation $\neg F$ is defined as $F \rightarrow \bot$
- $\langle H, T \rangle \models \varphi$ implies $T \models \varphi$ (proved implies potentially true)

Definition (Equilibrium/stable model) A model $\langle T, T \rangle$ of Γ is an equilibrium model iff

there is no $H \subset T$ such that $\langle H, T \rangle \models \Gamma$.

When this holds, T is called a stable model.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition (Equilibrium/stable model)

A model $\langle T, T \rangle$ of Γ is an equilibrium model iff

```
there is no H \subset T such that \langle H, T \rangle \models \Gamma.
```

When this holds, *T* is called a stable model.

In other words, all assumptions T are eventually proved H

A (10) > A (10) > A

- Syntax = propositional plus
 - $\Box \varphi$ = "forever" φ
 - $\Diamond \varphi =$ "eventually" φ
 - $\circ \varphi$ = "next moment" φ
 - φ **U** $\psi = \varphi$ "until eventually" ψ
 - φ **R** $\psi = \varphi$ "release" ψ
 - φ **W** $\psi = \varphi$ "while" ψ

- Syntax = propositional plus
 - $\Box \varphi$ = "forever" φ
 - $\Diamond \varphi =$ "eventually" φ
 - $\circ \varphi$ = "next moment" φ
 - φ **U** $\psi = \varphi$ "until eventually" ψ
 - φ **R** $\psi = \varphi$ "release" ψ
 - φ **W** $\psi = \varphi$ "while" ψ
- As we had with Equilibrium Logic:
 - A monotonic underlying logic: Temporal Here-and-There (THT)
 - 2 An ordering among models. Select minimal models.

- 4 回 ト 4 回 ト

Sequences

 $\bullet\,$ In standard LTL, interpretations are ∞ sequences of sets of atoms

{p, q}	{ <i>p</i> }	$\{q\}$	{}	{p, q}	

0 1 2 3 4	1
-----------	---

Sequences

 $\bullet\,$ In standard LTL, interpretations are ∞ sequences of sets of atoms

					F
{p, q}	{ <i>p</i> }	<i>{q}</i>	{}	{p, q}	
0	1	2	3	4	

• In THT we will have ∞ sequences of HT interpretations

 $\bullet\,$ We define an ordering among sequences $\textbf{H} \leq \textbf{T}$ when

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

• We define an ordering among sequences $\mathbf{H} \leq \mathbf{T}$ when

Definition (THT-interpretation)is a pair of sequences of sets of atoms $\langle H, T \rangle$ with $H \leq T$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つくぐ

• We define an ordering among sequences **H**<**T** when

Definition (THT-interpretation)is a pair of sequences of sets of atoms $\langle H, T \rangle$ with $H \leq T$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - つくぐ

Temporal Here-and-There (THT)

 $\langle \mathbf{H}, \mathbf{T} \rangle, i \models \varphi \quad \Leftrightarrow \quad "\varphi \text{ is proved at } i"$

Temporal Here-and-There (THT)

 $\langle \mathbf{H}, \mathbf{T} \rangle, i \models \varphi \iff "\varphi \text{ is proved at } i"$ $\langle \mathbf{T}, \mathbf{T} \rangle, i \models \varphi \iff "\varphi \text{ potentially true at } i" \Leftrightarrow \mathbf{T}, i \models \varphi \text{ in LTL}$

(日)

 $\langle \mathbf{H}, \mathbf{T} \rangle, i \models \varphi \quad \Leftrightarrow \quad "\varphi \text{ is proved at } i" \\ \langle \mathbf{T}, \mathbf{T} \rangle, i \models \varphi \quad \Leftrightarrow \quad "\varphi \text{ potentially true at } i" \quad \Leftrightarrow \quad \mathbf{T}, i \models \varphi \text{ in LTL}$

An interpretation *M* = (H, T) satisfies *α* at situation *i*, written *M*, *i* |= *α*

α	$M, i \models \alpha$ when
an atom p	
\wedge, \vee	as usual
$\varphi \to \psi$	$ \begin{array}{l} \mathbf{T}, i \models \varphi \rightarrow \psi \text{ in LTL and} \\ \langle \mathbf{H}, \mathbf{T} \rangle, i \models \varphi \text{ implies } \langle \mathbf{H}, \mathbf{T} \rangle, i \models \psi \end{array} $

Temporal Here-and-There (THT)

 $\langle \mathbf{H}, \mathbf{T} \rangle, i \models \varphi \iff "\varphi \text{ is proved at } i"$ $\langle \mathbf{T}, \mathbf{T} \rangle, i \models \varphi \iff "\varphi \text{ potentially true at } i" \Leftrightarrow \mathbf{T}, i \models \varphi \text{ in LTL}$

An interpretation *M* = (H, T) satisfies *α* at situation *i*, written *M*, *i* |= *α*

 $\begin{array}{c|c} \alpha & M, i \models \alpha \text{ when } \dots \\ \hline \circ \varphi & (M, i+1) \models \varphi \\ \Box \varphi & \forall j \ge i, \quad M, j \models \varphi \\ \Diamond \varphi & \exists j \ge i, \quad M, j \models \varphi \\ \varphi & \mathbf{U} & \psi \quad \exists j \ge i, \quad M, j \models \psi \text{ and } \forall k \text{ s.t. } i \le k < j, \quad M, k \models \varphi \\ \varphi & \mathbf{R} & \psi \quad \forall j \ge i, \quad M, j \models \psi \text{ or } \exists k, i \le k < j, \quad M, k \models \varphi \end{array}$

• *M* is a model of a theory Γ when $M, 0 \models \alpha$ for all $\alpha \in \Gamma$

イロト 不得 トイヨト イヨト ニヨー

▲ য় ▶ য় ৩ ৭ ৫
TIME 2020 24 / 58

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

 Image: Note of the second s

イロト イポト イヨト イヨト

イロト 不得 トイヨト イヨト 二日

 $\varphi \mathbf{R} \psi = \text{disjunction of two cases}$ • $\psi \mathbf{U} (\psi \land \varphi)$

 $\varphi \mathbf{R} \psi = \text{disjunction of two cases}$ • $\psi \mathbf{U} (\psi \land \varphi)$

 $\varphi \mathbf{R} \psi = \text{disjunction of two cases}$ • $\psi \mathbf{U} (\psi \land \varphi)$

 $\varphi \mathbf{R} \psi = \text{disjunction of two cases}$ • $\psi \mathbf{U} (\psi \land \varphi)$

 $\varphi \mathbf{R} \psi = \text{disjunction of two cases}$ • $\psi \mathbf{U} (\psi \land \varphi)$

 $\varphi \mathbf{R} \psi = \text{disjunction of two cases}$ • $\psi \mathbf{U} (\psi \land \varphi)$

 $\varphi \mathbf{R} \psi = \text{disjunction of two cases}$ • $\psi \mathbf{U} (\psi \land \varphi)$

 $\varphi \mathbf{W} \psi = \operatorname{do} \varphi$ while ψ

 ψ ?

 $\varphi \mathbf{W} \psi = \operatorname{do} \varphi$ while ψ

イロン イ理 とく ヨン 一

イロン イ理 とく ヨン 一

 $\varphi \mathbf{W} \psi = \operatorname{do} \varphi$ while ψ

• Some valid THT formulas:

$$\begin{array}{cccc} & & & & \forall \varphi \\ & & & & \Box \varphi \\ & & & & \Box \varphi \\ \circ (\varphi \otimes \psi) & \leftrightarrow & \circ \varphi \otimes \circ \psi \\ \varphi & & & & \psi \lor (\varphi \land \circ (\varphi & U & \psi)) \\ \varphi & & & & & \psi \land (\varphi \lor \circ (\varphi & R & \psi)) \\ \varphi & & & & & \psi \land (\varphi \lor \circ (\varphi & R & \psi)) \\ \varphi & & & & & & \psi \land (\psi \to \circ (\varphi & W & \psi)) \\ \neg (\varphi & & & & & & \psi \land (\psi \to \circ (\varphi & W & \psi)) \\ \neg (\varphi & & & & & & & & & & \\ \circ \neg \varphi & & & & & & & & & & \\ \neg (\varphi & & & & & & & & & & & & \\ \neg (\varphi & & & & & & & & & & & & & & \\ \end{array}$$

For $\otimes = \land, \lor, \rightarrow, \mathbf{U}, \mathbf{R}$.

• Some valid THT formulas:

For $\otimes = \land, \lor, \rightarrow, \mathbf{U}, \mathbf{R}$.

• Axiomatization of THT [Balbiani & Diéguez 16]

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition (Temporal Equilibrium Model)

of a theory Γ is a model $M = \langle \mathbf{T}, \mathbf{T} \rangle$ of Γ such that there is no $\mathbf{H} < \mathbf{T}$ satisfying $\langle \mathbf{H}, \mathbf{T} \rangle$, $\mathbf{0} \models \Gamma$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Definition (Temporal Equilibrium Model)

of a theory Γ is a model $M = \langle \mathbf{T}, \mathbf{T} \rangle$ of Γ such that there is no $\mathbf{H} < \mathbf{T}$ satisfying $\langle \mathbf{H}, \mathbf{T} \rangle$, $\mathbf{0} \models \Gamma$.

• Temporal Equilibrium Logic (TEL) is the logic induced by temporal equilibrium models.

Definition (Temporal Stable Model)

T is a temporal stable model of a theory Γ iff $\langle T, T \rangle$ is a temporal equilibrium model of Γ .

Example 1: TEL models of □(¬p → ○p). It's like an infinite program:

Example 1: TEL models of □(¬p → ○p). It's like an infinite program:

$$eg p \rightarrow op$$

 $eg op \rightarrow o^2 p$
 $eg o^2 p \rightarrow o^3 p$
 \vdots

• TEL models have the form

corresponding to LTL models of $\neg p \land \Box(\neg p \leftrightarrow \circ p)$.

• Example 2: consider TEL models of $\Diamond p$

Example 2: consider TEL models of ◊p is like p ∨ ∘p ∨ ∘∘p ∨ …

 Example 2: consider TEL models of ◊p is like p ∨ ∘p ∨ ∘∘p ∨ ...

TEL models have the form

corresponding to LTL models of $\neg p$ **U** $(p \land \circ \Box \neg p)$

• In ASP terms, how can we represent temporal stable models? infinitely long! infinitely many!

 In ASP terms, how can we represent temporal stable models? infinitely long! infinitely many!

 Answer: using Büchi automata. An infinite-length word is accepted iff it visits some acceptance state infinitely often

- Example 3: consider TEL models of □◊*p*
- In LTL this means *p* occurs infinitely often.

• • • • • • • • • • • •

- Example 3: consider TEL models of □◊*p*
- In LTL this means *p* occurs infinitely often.
- So take any LTL model T like that, i.e., $\langle T, T \rangle$ is a total THT model.

< 🗇 🕨 < 🖃 🕨

- Example 3: consider TEL models of □◊*p*
- In LTL this means *p* occurs infinitely often.
- So take any LTL model T like that, i.e., $\langle T, T \rangle$ is a total THT model.
- Now build some H < T by removing one p at some point. But then $\langle H, T \rangle$ is also a model since H contains $\infty 1 = \infty p$'s yet!

- Example 3: consider TEL models of □◊*p*
- In LTL this means *p* occurs infinitely often.
- So take any LTL model T like that, i.e., $\langle T, T \rangle$ is a total THT model.
- Now build some H < T by removing one p at some point. But then $\langle H, T \rangle$ is also a model since H contains $\infty 1 = \infty p$'s yet!
- Therefore, $\Box \Diamond p$ alone has no TEL models.

• We can still express infinitely often by disabling minimality of p

• • • • • • • • • • • • •

- We can still express infinitely often by disabling minimality of p
- This can be done adding the (excluded middle) axiom

$$\Box(\rho \lor \neg \rho) \tag{EM}$$

< < >> < <</p>

(a choice rule in ASP)

- We can still express infinitely often by disabling minimality of p
- This can be done adding the (excluded middle) axiom

$$\Box(\boldsymbol{\rho} \vee \neg \boldsymbol{\rho}) \tag{EM}$$

(a choice rule in ASP)

• In fact, if we add (EM) for all atoms, TEL collapses into LTL

Example 4: consider TEL models of the pair of formulas

$$\Box(\neg \circ p \rightarrow p) \\ \Box(\circ p \rightarrow p)$$

• Example 4: consider TEL models of the pair of formulas

 $\Box(\neg \circ p \rightarrow p) \\ \Box(\circ p \rightarrow p)$

• Curiosity: implications go backwards in time

• Example 4: consider TEL models of the pair of formulas

 $\Box(\neg \circ p \rightarrow p) \\ \Box(\circ p \rightarrow p)$

- Curiosity: implications go backwards in time
- This is LTL-equivalent to:

 $\Box \big((\neg \circ \rho \to \rho) \land (\circ \rho \to \rho) \big)$

• Example 4: consider TEL models of the pair of formulas

 $\Box(\neg \circ p \rightarrow p) \\ \Box(\circ p \rightarrow p)$

- Curiosity: implications go backwards in time
- This is LTL-equivalent to:

$$\Box ((\neg \circ p \to p) \land (\circ p \to p))$$

$$\equiv \Box (\underbrace{\neg \circ p \lor \circ p}_{\top} \to p)$$

$$\equiv \Box p$$

• Example 4: consider TEL models of the pair of formulas

$$\Box(\neg \circ p \rightarrow p) \ \Box(\circ p \rightarrow p)$$

• So LTL models make *p* true forever,

• Example 4: consider TEL models of the pair of formulas

 $\Box(\neg \circ p \rightarrow p) \\ \Box(\circ p \rightarrow p)$

• So LTL models make *p* true forever, but we won't get TEL models!

• Example 4: consider TEL models of the pair of formulas

 $\Box(\neg \circ p \rightarrow p) \\ \Box(\circ p \rightarrow p)$

- So LTL models make *p* true forever, but we won't get TEL models!
- We can build a strictly smaller model with H where from some point on T, p becomes false forever

• Example 5: lamp switch again

< ロ > < 同 > < 回 > < 回 >

• Example 5: lamp switch again

We never get $up \land down$ Once up is true, it remains so forever

TIME 2020 37 / 58

Reasonable behavior when theories "look like" logic programs

• • • • • • • • • • • •

- Reasonable behavior when theories "look like" logic programs
- But what happens with arbitrary temporal formulas?
 e.g. ◊p ∧ (¬□◊q → ◊(p U q))

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Reasonable behavior when theories "look like" logic programs
- But what happens with arbitrary temporal formulas?
 e.g. ◊p ∧ (¬□◊q → ◊(p U q))
- Kamp's translation into MFO(<) is applicable to TEL!

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- Reasonable behavior when theories "look like" logic programs
- But what happens with arbitrary temporal formulas?
 e.g. ◊p ∧ (¬□◊q → ◊(p U q))
- Kamp's translation into MFO(<) is applicable to TEL!
- Example $Kamp[\Box(\neg p \rightarrow \circ p)]$ amounts to:

 $\forall x \ (\neg p(x) \rightarrow \exists y \ (y = x + 1 \land p(y)) \)$

- Reasonable behavior when theories "look like" logic programs
- But what happens with arbitrary temporal formulas?
 e.g. ◊p ∧ (¬□◊q → ◊(p U q))
- Kamp's translation into MFO(<) is applicable to TEL!
- Example $Kamp[\Box(\neg p \rightarrow \circ p)]$ amounts to:

$$\forall x \ (\ \neg p(x) \rightarrow \exists y \ (y = x + 1 \land p(y)) \)$$

• Temporal equilibrium models of φ are in one-to-one relation to Equilibrium Models of the first order formula $Kamp[\varphi]$

- Reasonable behavior when theories "look like" logic programs
- But what happens with arbitrary temporal formulas?
 e.g. ◊p ∧ (¬□◊q → ◊(p U q))
- Kamp's translation into MFO(<) is applicable to TEL!</p>
- Example $Kamp[\Box(\neg p \rightarrow \circ p)]$ amounts to:

 $\forall x (\neg p(x) \rightarrow \exists y (y = x + 1 \land p(y)))$

- Temporal equilibrium models of φ are in one-to-one relation to Equilibrium Models of the first order formula $Kamp[\varphi]$
- FO-Equilibrium Logic is the most general logical characterisation of ASP

Pedro Cabalar

- 2 Definitions and examples
- 3 Automata-based computation
 - 4 Temporal Logic Programming
- 5 Conclusions and open topics

4 A N

1. Enconding THT into LTL

- THT can be encoded into LTL, adding auxiliary atoms using the same translation of → from HT to classical logic
- Intuition: p will represent $p \in T$ whereas p' will mean $p \in H$

1. Enconding THT into LTL

- THT can be encoded into LTL, adding auxiliary atoms using the same translation of → from HT to classical logic
- Intuition: p will represent $p \in T$ whereas p' will mean $p \in H$

Pedro Cabalar	P	e	dr	0 1	С	al	b	al	a	r
---------------	---	---	----	-----	---	----	---	----	---	---

 Warning: this does not mean that we can encode Temporal Stable Models as models of an LTL theory!

- Warning: this does not mean that we can encode Temporal Stable Models as models of an LTL theory!
- This is an open question (failed attempt [C_ & Diéguez, ASPOCP'14])
 We know it holds for some fragments (splittable temporal programs)

< 🗇 🕨 < 🖃 🕨

- Warning: this does not mean that we can encode Temporal Stable Models as models of an LTL theory!
- This is an open question (failed attempt [C_ & Diéguez, ASPOCP'14])
 We know it holds for some fragments (splittable temporal programs)
- THT-satisfiability = PSPACE-complete [C_ & Demri 11] TEL-satisfiability = EXPSPACE-complete [Bozzelli & Pearce 15]

• • • • • • • • • • • • •

[C_ & Demri 2011]

Definition (Automata Based Computation Method)

LTL (i. e. total) models which do not have a strictly smaller $\langle H, T \rangle$ \downarrow A_{φ} \otimes $h(A_{\varphi'})$

• Intuition: $A_{\varphi'}$ captures the $\langle H, T \rangle$ satisfying H < T

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

[C_ & Demri 2011]

Definition (Automata Based Computation Method)

LTL (i. e. total) models which do not have a strictly smaller $\langle H, T \rangle$

 $h(\mathcal{A}_{\omega'})$

- Intuition: $A_{\varphi'}$ captures the $\langle H, T \rangle$ satisfying H < T
- We use the φ^* translation and force non-LTL models. Example: if $\varphi = \Diamond up$ then

 $\varphi' = \Diamond up' \land \Box (up' \to up) \land \Diamond (up \land \neg up')$

[C_ & Demri 2011]

Definition (Automata Based Computation Method)

LTL (i. e. total) models which do not have a strictly smaller $\langle H, T \rangle$

 $h(\mathcal{A}_{\omega'})$

- Intuition: $A_{\varphi'}$ captures the $\langle H, T \rangle$ satisfying H < T
- We use the φ^* translation and force non-LTL models. Example: if $\varphi = \Diamond up$ then

 $\varphi' = \Diamond up' \land \Box (up' \to up) \land \Diamond (up \land \neg up')$

Operation h(A_φ) filters out the auxiliary atoms p'

[C_ & Demri 2011]

Definition (Automata Based Computation Method)

LTL (i. e. total) models which do not have a strictly smaller $\langle H, T \rangle$

 $h(\mathcal{A}_{\omega'})$

- Intuition: $A_{\varphi'}$ captures the $\langle H, T \rangle$ satisfying H < T
- We use the φ^* translation and force non-LTL models. Example: if $\varphi = \Diamond up$ then

 $\varphi' = \Diamond up' \land \Box (up' \to up) \land \Diamond (up \land \neg up')$

- Operation h(A_φ) filters out the auxiliary atoms p'
- Büchi automata are closed w.r.t. complementation and intersection

 $up \lor down.$ $\Box (up \land \neg \circ down \to \circ up).$ $\Box (down \land \neg \circ up \to \circ down).$ $\Box (up \lor \neg up)$

イロト イポト イヨト イヨト

 $up \lor down.$ $\Box (up \land \neg \circ down \to \circ up).$ $\Box (down \land \neg \circ up \to \circ down).$ $\Box (up \lor \neg up)$ $\Diamond \Box up \to \Box stuck.$

Example

- 2 Definitions and examples
- 3 Automata-based computation

5 Conclusions and open topics

- B

• LTL_f = LTL for finite traces [De Giacomo & Vardi 13]

• • • • • • • • • • • •

- LTL_f = LTL for finite traces [De Giacomo & Vardi 13]
- Closer to ASP problem solving strategy: solutions for planning, diagnosis, explanation, ... are finite

- LTL_f = LTL for finite traces [De Giacomo & Vardi 13]
- Closer to ASP problem solving strategy: solutions for planning, diagnosis, explanation, ... are finite
- Natural representation of dynamic rules: [Gabbay 87]
 declarative past → imperative future

- LTL_f = LTL for finite traces [De Giacomo & Vardi 13]
- Closer to ASP problem solving strategy: solutions for planning, diagnosis, explanation, ... are finite
- Natural representation of dynamic rules: [Gabbay 87]
 declarative past → imperative future
- Adding past operators to LTL: same expressiveness but

- LTL_f = LTL for finite traces [De Giacomo & Vardi 13]
- Closer to ASP problem solving strategy: solutions for planning, diagnosis, explanation, ... are finite
- Natural representation of dynamic rules: [Gabbay 87]
 declarative past → imperative future
- Adding past operators to LTL: same expressiveness but exponentially more succint [Markey 03]

Futureofor nextUfor untilRfor releaseWfor while

	Pa	st • S T	for <i>previous</i> for <i>since</i> for <i>trigger</i>	Fu	ture	o U R W	for for for for	next until release while
$\blacksquare \varphi$	<i>def</i> ≝	\perp T $arphi$	always before	$\Box \varphi$	<i>def</i> ≝	$\perp \mathbf{R}$	φ	always after
			-					eventually after
			initial					final
$\widehat{\bullet}\varphi$	<i>def</i> ≝	$\bullet \varphi \vee \mathbf{I}$	weak previous	$\widehat{o} \varphi$	def ≝	$\varphi \vee$	F	weak next

イロト イヨト イヨト イヨト

 Satisfaction of formulas introduces conditions on trace limits on the past (*i* ≥ 0) and the future (*i* < λ)

α	$M, i \models \alpha$ when
$\circ \varphi$	$i+1 < \lambda$ and $(M, i+1) \models \varphi$
$\widehat{o} \varphi$	$i + 1 = \lambda$ or $(M, i + 1) \models \varphi$
$arphi$ U ψ	$\exists j : i \leq j < \lambda, M, j \models \psi \text{ and } \forall k \text{ s.t. } i \leq k < j, M, k \models \varphi$
$egin{array}{c} & \varphi & \\ \widehat{ullet} arphi & \\ & \varphi & \\ & & \end{array}$	$i > 0$ and $(M, i-1) \models \varphi$ $i = 0$ or $(M, i-1) \models \varphi$
$arphi$ S ψ	$\exists j : 0 \leq \mathbf{j} \leq i, \ M, \mathbf{j} \models \psi \text{ and } \forall k \text{ s.t. } \mathbf{j} < k \leq i, \ M, \mathbf{k} \models \varphi$

• • • • • • • • • • • •

 Satisfaction of formulas introduces conditions on trace limits on the past (*i* ≥ 0) and the future (*i* < λ)

α	$M, i \models \alpha$ when	_			
$\circ \varphi$	$i+1 < \lambda$ and $(M, i+1) \models \varphi$	_			
$\widehat{o} \varphi$	$i + 1 = \lambda$ or $(M, i+1) \models \varphi$				
$arphi$ U ψ	$\exists j : i \leq j < \lambda, M, j \models \psi \text{ and } \forall k \text{ s.t. } i \leq k < j, M, k \models \varphi$				
$\widehat{\bullet}\varphi$	$i > 0$ and $(M, i-1) \models \varphi$ $i = 0$ or $(M, i-1) \models \varphi$				
$arphi$ S ψ	$\exists j : 0 \leq j \leq i, \ M, j \models \psi \text{ and } \forall k \text{ s.t. } j < k \leq i, \ M, k \models \varphi$				
When $\lambda = \omega$ we get (infinite-traces) TEL as before					

Normal form

 Temporal theories can be reduced to a normal form closer to logic programs

Normal form

- Temporal theories can be reduced to a normal form closer to logic programs
- temporal literals = $\{a, \neg a, \bullet a, \neg \bullet a \mid a \in Atoms\}$

Definition (Temporal rule)

A temporal rule is either:

- an initial rule $B \rightarrow A$
- a dynamic rule $\widehat{\circ} \Box (B \to A)$
- a fulfillment rule $\Box(\Box p \rightarrow q)$ or $\Box(p \rightarrow \Diamond q)$

where $B = b_1 \land \cdots \land b_n$ with $n \ge 0$, $A = a_1 \lor \cdots \lor a_m$ with $m \ge 0$

- b_i, a_j = temporal literals for dynamic rules
- b_i , a_j = regular literals a, $\neg a$ for initial rules

p, *q* = atoms

Pedro Cabalar

Normal form

- Temporal theories can be reduced to a normal form closer to logic programs
- temporal literals = $\{a, \neg a, \bullet a, \neg \bullet a \mid a \in Atoms\}$

Definition (Temporal rule)

A temporal rule is either:

- an initial rule $B \rightarrow A$
- a dynamic rule $\widehat{\circ} \Box (B \to A)$
- a final rule \Box ($\mathbf{F} \rightarrow (B \rightarrow A)$) when traces are finite

where $B = b_1 \land \cdots \land b_n$ with $n \ge 0$, $A = a_1 \lor \cdots \lor a_m$ with $m \ge 0$

- b_i, a_j = temporal literals for dynamic rules
- b_i, a_j = regular literals $a, \neg a$ for initial rules
- *p*, *q* = atoms

A temporal logic program is a set of temporal rules.

Syntactic Fragment

• An interesting fragment are present-centered programs

- initial rule $B \rightarrow A$
- dynamic rule $\widehat{\circ} \Box (B \rightarrow A)$
- final rule \Box ($\mathbf{F} \rightarrow (B \rightarrow A)$)

present-centered = A does not contain temporal operators

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

• An interesting fragment are present-centered programs

- initial rule $B \rightarrow A$
- dynamic rule $\widehat{\circ} \Box(B \to A)$
- final rule \Box (**F** \rightarrow (**B** \rightarrow **A**))

present-centered = A does not contain temporal operators

• Example of present-centered program:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

• Tool telingo [C_, Kaminski, Morkisch & Schaub 19] Temporal extension of ASP solver clingo

• • • • • • • • • • • • •

• Tool telingo [C_, Kaminski, Morkisch & Schaub 19] Temporal extension of ASP solver clingo

```
#program initial.
up;down.
#program dynamic.
up :- 'up, not down.
down :- 'down, not up.
#program always.
{up}.
```

- We can use a more general syntactic fragment past-future = $\alpha \rightarrow \beta$ where
 - α may only contain past operators
 - β may only contain future operators

and none of them contains \rightarrow

A (1) > A (2) > A

- We can use a more general syntactic fragment past-future = $\alpha \rightarrow \beta$ where
 - α may only contain past operators
 - β may only contain future operators

and none of them contains \rightarrow

• Example: the integrity constraint

```
shoot \land \blacksquare unloaded \land \bullet \blacklozenge shoot \rightarrow \bot
```

can be expressed in telingo as:

- We can use a more general syntactic fragment past-future = $\alpha \rightarrow \beta$ where
 - α may only contain past operators
 - β may only contain future operators

and none of them contains \rightarrow

• Example: the integrity constraint

```
shoot \land \blacksquare unloaded \land \bullet \blacklozenge shoot \rightarrow \bot
```

can be expressed in telingo as:

:- shoot, &tel { <* unloaded & < <? shoot }.

Beyond LTL

- In [Bosser et al. 18, C_ et al. 19] we extend TEL and TEL_f to the syntax of Linear Dynamic Logic (LDL) [De Giacomo & Vardi 13]
- DEL = LDL + ASP.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Beyond LTL

- In [Bosser et al. 18, C_ et al. 19] we extend TEL and TEL_f to the syntax of Linear Dynamic Logic (LDL) [De Giacomo & Vardi 13]
- DEL = LDL + ASP. Example:

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

- In [Bosser et al. 18, C_ et al. 19] we extend TEL and TEL_f to the syntax of Linear Dynamic Logic (LDL) [De Giacomo & Vardi 13]
- DEL = LDL + ASP. Example:
 - $\perp \neg \leftarrow \langle ((up^* + down^*); ready?; serve)^*; wait^* \rangle F$

elevator moving in a unique direction until the call is served

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- In [Bosser et al. 18, C_ et al. 19] we extend TEL and TEL_f to the syntax of Linear Dynamic Logic (LDL) [De Giacomo & Vardi 13]
- DEL = LDL + ASP. Example:

 $\perp \neg \leftarrow \langle ((up^* + down^*); ready?; serve)^*; wait^* \rangle F$

elevator moving in a unique direction until the call is served

 [C_ et al, ECAI 20] LDL operators implemented in telingo (only in constraints)

```
#program initial.
:- not &del{ *( (*up + *down) ;; ?ready ;; serve)
                    ;; *wait .>? &final }.
```

 In [C_ et al, ICLP 20] (OTomorrow 18:15) we introduce metric operators

 $\Box(\textit{red} \land \textit{green} \rightarrow \bot)$ $\Box(\neg \textit{green} \rightarrow \textit{red})$ $\Box(\textit{push} \rightarrow \Diamond_3 \Box_4 \textit{green})$

The traffic light is red by default

< ロ > < 同 > < 回 > < 回 >

```
    In [C_ et al, ICLP 20] (OTomorrow 18:15)
we introduce metric operators
```

 $\Box(\textit{red} \land \textit{green} \rightarrow \bot)$ $\Box(\neg \textit{green} \rightarrow \textit{red})$ $\Box(\textit{push} \rightarrow \Diamond_3 \Box_4 \textit{green})$

The traffic light is red by default when we push it, it takes at most 3 steps to stay green for 4 steps

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

```
    In [C_ et al, ICLP 20] (OTomorrow 18:15)
we introduce metric operators
```

 $\Box(\textit{red} \land \textit{green} \rightarrow \bot)$ $\Box(\neg \textit{green} \rightarrow \textit{red})$ $\Box(\textit{push} \rightarrow \Diamond_3 \Box_4 \textit{green})$

The traffic light is red by default when we push it, it takes at most 3 steps to stay green for 4 steps

• We extended this for intervals (only discrete by now).

• • • • • • • • • • • • •

- 2 Definitions and examples
- 3 Automata-based computation
- 4 Temporal Logic Programming
- 5 Conclusions and open topics

< 🗇 🕨 < 🖃 >

• • • • • • • • • • • • •

- TEL = suitable framework for temporal reasoning + ASP
- Simple semantics thanks to just merging two logical formalisms: Equilibrium Logic + LTL.
- Implementations: telingo, abstem, stelp
- It constitutes a new open field. Many open topics

Open topics

- Open theoretical problems:
 - Kamp's theorem: monadic EL(<) can be transformed into THT? (possibly not)
 - Interdefinability of operators
 - Can temporal stable models be captured by LTL?
- Finite traces: axiomatisation, automata-based methods, grounding
- New syntactic subclasses with satisfiability lower than EXPSPACE [Bozzelli & Pearce 15]
- Planning tool. Compare to planners using LTL control knowledge like TLPIan [Bacchus & Kabanza 00].
- Encoding action languages

Temporal Modalities in Answer Set Programming Pedro Cabalar

Thank you for your attention!

September 23rd, 2020 TIME 2020 Bozen-Bolzano, Italy

A B A B A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 B
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A